

ODE Guidance for the Content of Premarket Submission
for Medical Devices Containing Software

Draft Document

This guidance document is being distributed for comment purposes only.

CDRH Software Task Force Group
Center for Devices and Radiological Health

Draft released for comment on: September 3, 1996

Comments and suggestions regarding this draft document should be submitted within 120
days of the above release date to Joanna H. Weitershausen, HFZ-450, Office of Device
Evaluation, 9200 Corporate Blvd., Rockville, Maryland 20850. Comments and suggestions
received after this date may not be acted upon by the Agency until the document is next
revised or updated. For questions regarding this draft document, contact Joanna H.
Weitershausen at (301) 443-8609.

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES
Food and Drug Administration

Draft Version 1.3 12 August 1996
CDRH Use Only

ii

Center for Devices and Radiological Health
CDRH Software Task Force

This document was prepared and reviewed by the FDA Center for
Devices and Radiological Health (CDRH) Software Task Force, which
included representatives from the following offices:

Office of Compliance and Surveillance (OCS)
E. Stewart Crumpler, OC Software Cross-cutter, OC/DOE3

Office of Device Evaluation (ODE)
Laura Byrd, Electrical Engineer, ODE/DRAERD
James M. Cheng, Computer Scientist, ODE/DCRND
Robert DeLuca, ODE/DGRD

 *Joanna Haywood, Electrical Engineer, ODE/DCRND
Jodi Nashman, Biomedical Engineer, ODE/DGRD
Neil Ogden, Biomedical Engineer, DGRD/GSDB
Kimberly Peters, Biomedical Engineer, ODE/DDIGD
Ralph E. Shuping, DSc., Health Physicist, ODE/DRAERD
Thomas E. Simms, Biologist, ODE/DCLD
Morris Waxler, PhD., Psychologist, ODE/DOD

 **David A. Zier, Electrical Engineer, ODE/DCRND

Office of Health Industries Programs (OHIP)
Peter B. Carstensen, Human Factors Engineer, OHIP/DDUPSA
Charles R. Sawyer, PhD., Human Factors Scientist,

OHIP/DDUPSA

Office of Surveillance and Biometrics (OSB)
Sharon Dillard
Isaac Hantman, Biomedical Engineer, OSB/DSS

Office of Science & Technology (OST)
Joseph Jorgens, OST/DECS

 **Debra S. Herrmann, Computer Scientist, OST/DECS

FDA Office of Regulatory Affairs (ORA/DFI)
David Bergeson, Consumer Safety Officer
Denise Dion, Consumer Safety Officer

FDA Center for Biologics Evaluation and Research (CBER)
John Capen, Operations Research Analyst, (CBER/OBRR)

FDA Center for Drug Evaluation and Research (CDER)
Charles Snipes, PhD., Pharmacologist (CDER/OC)

* Task Force chairperson
** Former Task Force co-chair

Draft Version 1.3 12 August 1996
CDRH Use Only

iii

Independent Reviewers

The following individuals and organizations, representing
academia, industry, and a federal regulatory agency, provided
invaluable input during the informal pre-review of draft version
1.1 of this guidance. Participation in the pre-review of the
guidance does not necessarily imply approval by such reviewers or
by the organizations with which they are affiliated.

1. Michael P. DeWalt, National Resource Specialist -- Software
Federal Aviation Administration (FAA)
ANM-106N
1601 Lind Avenue SW
Renton, WA 98055
206.227.2762

2. Dr. Martin D. Fraser
Department of Mathematics and Computer Science
Georgia State University
Atlanta, GA 30303-3083
404.651.2245

3. Dr. Vijay Vaishnavi
Department of Computer Information Systems
Georgia State University
P.O. Box 4015
Atlanta, GA 30302-4015
404.651.3891

4. Dee Simons, Vice President of Science & Technology
Health Industries Manufacturers Association (HIMA)
1200 G Street NW, Suite 400
Washington, DC 20005-3814
202.783.8700

5. Gary LeBlanc, Director of Quality Assurance/Regulatory
Affairs
Indiana Medical Device Manufacturers Council (IMDMC)
1908 East 64th Street, South Drive
Indianapolis, IN 46220-2186
317.257.8558

6. Robert G. Britain, Vice President, Medical Products
National Electrical Manufacturers Association (NEMA)
1300 North 17th Street, Suite 1847
Rosslyn, VA 22209
703.841.3241

Draft Version 1.3 12 August 1996
CDRH Use Only

iv

7. Dr. Ugo Buy
Electrical Engineering and Computer Science Department
University of Illinois (M/C 154)
Chicago, IL 60607
312.413.2296

8. Dr. Carmen Trammell
Department of Computer Science
University of Tennessee
107 Ayres Hall
Knoxville, TN 37966
423.974.5784

Draft Version 1.3 12 August 1996
CDRH Use Only

v

Document Update and Revision Log

This document is issued on double sided 3-hole punch paper with
tabs between sections. It is intended to be used in a loose-leaf
notebook. This will facilitate the issuance of periodic
additions, change pages, and updates to accommodate the rapid
evolution of software technology. The log below identifies the
most current configuration of the document. For easy
identification, the version number and publication date are
printed on the top right and top left corners of each page.
Planned additions, change pages, and updates to the document will
be announced at the annual AAMI/FDA International Standards
Conference and through the new HIMA-NET. Copies of the document
and the most current revision log are available from
FDA/CDRH/OHIP Division of Small Manufacturers Assistance,
1.800.638.2041.

After the first official version of this document is issued the
implementation date will be effective 90 days later. This phase-
in period will allow industry an opportunity to incorporate the
guidance into its submissions practices in order to ensure the
best possible submissions which can be efficiently and
effectively reviewed by FDA. Until the guidance goes into
effect, both FDA reviewers and industry should continue to use
the current version of the guidance.

Version Dated Section(s) Pages Comments
draft 1.0 11/16/95 all all initial

CDRH review

draft 1.1 12/15/95 all all review by
CDRH and
independent
reviewers

working 3/04/96 all all Taskforce
drafts comments

 3/13/96 all all CDRH comments

draft 1.2 5/03/96 all all CDRH comments

draft 1.3 8/12/96 all all formal
comment/review
per FR notice

Draft Version 1.3 12 August 1996
CDRH Use Only

vi

1.0 2/03/97 all all first official
version
issued

1.0 5/03/97 all all guidance takes

effect

Draft Version 1.3 12 August 1996
CDRH Use Only

vii

Table of Contents

Section Page
CDRH Software Task Force.................................. ii
Independent Reviewers..................................... iii
Document Update and Revision Log.......................... v
Table of Contents... vii
List of Figures... x

1. INTRODUCTION... 1-1
1.1 Purpose.. 1-1
1.2 Background... 1-1
1.3 Scope.. 1-1
1.4 Intended Audience.................................... 1-2
1.5 Document Organization................................ 1-2
1.6 Relationship to Other Documents...................... 1-3
1.7 Terminology.. 1-4

2. SOFTWARE RISK MANAGEMENT ACTIVITIES................ .. 2-1
2.1 Lifecycle Models and Development Methodologies....... 2-1
2.2 Requirements Analysis and Specification.............. 2-2
2.3 Architectural Analysis and Specification............. 2-2
2.4 Design and Development............................... 2-3
2.5 Verification Activities.............................. 2-3
2.6 Validation Activities................................ 2-4
2.7 Configuration Management and Change Control.......... 2-4
2.8 Risk Management...................................... 2-5
2.8.1 Risk Analysis Activities........................ 2-5
2.8.2 Risk Control Activities......................... 2-6

3. LEVEL OF CONCERN..................................... 3-1
3.1 Background... 3-1
3.2 Approach Recommended by FDA.......................... 3-1
3.2.1 Definitions..................................... 3-3
3.2.2 Decision Process................................ 3-3

4. DOCUMENTATION IN A PREMARKET SUBMISSION 4-1
4.1 Review Items... 4-1
4.1.1 Level of Concern................................ 4-2
4.1.2 Descriptive Data................................ 4-2
4.1.3 Labeling.. 4-4
4.1.4 Software Development Lifecycle Activities....... 4-4
4.1.5 Risk Management Activities...................... 4-8
4.2 Level of Documentation............................... 4-8
4.2.1 Lower Level of Concern Software................. 4-8
4.2.2 Higher Level of Concern Software................ 4-9
4.3 Types of Submissions................................. 4-9
4.3.1 Premarket Notification - 510(k)................. 4-9

Draft Version 1.3 12 August 1996
CDRH Use Only

viii

4.3.2 Investigational Device Exemption - IDE.......... 4-10
4.3.3 Premarket Approval Application - PMA............ 4-10
4.4 Software Changes and Modifications................... 4-10
4.5 Summary.. 4-12

APPENDICES

A. SOFTWARE DEVELOPMENT LIFECYCLE ACTIVITIES........ A-1
A.1 Lifecycle Models and Development Methodologies....... A-2
A.2 Requirements Analysis and Specification.............. A-3
A.3 Architectural Analysis and Specification............. A-4
A.4 Design and Development............................... A-4
A.5 Verification Activities.............................. A-5
A.5.1 Verification of Requirements Analysis and

Specification................................... A-5
A.5.2 Verification of Architectural Analysis and

Specification................................... A-6
A.5.3 Verification of Design and Development.......... A-6
A.5.4 Verification Testing............................ A-7
A.6 Validation Activities................................ A-8
A.7 Configuration Management and Change Control.......... A-9
A.8 Independent Verification and Validation.............. A-10

B. TECHNOLOGICAL ISSUES AND SPECIAL TOPICS B-1
B.1 Artificial Intelligence, Expert Systems, and

Neural Networks...................................... B-1
B.2 Automatic Code Generators............................ B-3
B.3 Automated Software Engineering (ASE) Tools........... B-3
B.4 Changes and Modifications............................ B-3
B.5 Clinical Data.. B-4
B.6 Closed Loop Control and Target Control............... B-5
B.7 Custom Operating Systems............................. B-5
B.8 Data Compression..................................... B-6
B.9 Embedded and Real-Time Systems....................... B-6
B.10 Human Factors and Software Design.................... B-6
B.10.1 Common Problems................................. B-7
B.10.2 Examples.. B-7
B.10.3 Proper Analysis and Testing Pays Off............ B-8
B.11 Off-The-Shelf (OTS) Software......................... B-9
B.12 Open Systems and Open Systems Architecture........... B-9
B.13 Process Control Software............................. B-10
B.14 Redundant Displays................................... B-10
B.15 Research Shareware/Freely Distributed Software....... B-10
B.16 Reuse and Libraries.................................. B-11
B.17 Security and Privacy................................. B-11
B.18 Stand-Alone Software................................. B-12
B.19 Software Accessories................................. B-12
B.20 User Modifiable Software............................. B-12

Draft Version 1.3 12 August 1996
CDRH Use Only

ix

C. REVIEW CHECKLIST AND COMMON REQUESTS.......... C-1
C.1 Review Checklist..................................... C-1
C.2 Common Requests...................................... C-3

D. RELEVANT NATIONAL AND INTERNATIONAL CONSENSUS
STANDARDS.. D-1

D.1 General Lifecycle Activities......................... D-1
D.2 Safety and Reliability............................... D-2
D.3 Quality Assurance.................................... D-3
D.4 Configuration Management............................. D-5
D.5 Test and Evaluation.................................. D-5
D.6 Automated Tools...................................... D-5
D.7 Human Factors Engineering............................ D-5

E. BIBLIOGRAPHY... E-1
E.1 General Lifecycle Activities......................... E-1
E.2 Safety and Reliability............................... E-2
E.3 Quality Assurance.................................... E-2
E.4 Test and Evaluation.................................. E-2
E.5 Human Factors Engineering............................ E-3
E.6 FDA Publications..................................... E-3

F. GLOSSARY OF COMPUTERIZED SYSTEM AND SOFTWARE
DEVELOPMENT TERMINOLOGY F-1

Draft Version 1.3 12 August 1996
CDRH Use Only

x

List of Figures

Figure Page
1-1 U.S. Regulatory Hierarchy for Medical Device

Software... 1-4

2-1 Generic Software Development Lifecycle Model......... 2-2

2-2 Complementary Analysis and Verification Techniques... 2-4

2-3 Risk Management Process.............................. 2-7

2-4 Standard Risk Management Template: Part I - Risk
 Analysis... 2-8

2-4 Standard Risk Management Template: Part II - Risk
Control.. 2-9

3-1 Risk Regions... 3-2

3-2 FDA's Approach to Deciding Level of Concern.......... 3-5

4-1 Summary of potential documentation items for a new
premarket software submission........................ 4-3

4-2 Relationship between development generic lifecycle
phases and work products............................. 4-5

4-3 Summary of potential documentation items for changes
in a premarket software submission................... 4-11

A-1 Generic Software Development Lifecycle Model......... A-4

A-2 Relationship between generic development lifecycle
phases and work products............................. A-12

Draft Version 1.3 12 August 1996
CDRH Use Only

1-1

SECTION 1. Introduction

1.1 Purpose.

This document provides guidance on the regulatory review of
premarket medical device software submissions. It replaces the
"Reviewer Guidance for Computer Controlled Medical Devices
Undergoing 510(k) Review" issued in 1991. This guidance
discusses the key elements reviewers look for in a premarket
medical device software submission; thereby providing a common
baseline from which both manufacturers and scientific reviewers
can operate. This guidance is also intended to further the
understanding of software engineering practices, quality,
reliability, and safety; mainly by referring to existing
standards (Appendix D), textbooks (Appendix E), and generic
software development tutorial (Appendix A).

1.2 Background.

The primary motivation for developing this new guidance was to
clarify the existing guidance. FDA has four years experience
using the existing guidance. Feedback from both manufacturers
and scientific reviewers has been incorporated into the new
guidance. By clarifying the guidance, the Agency hopes to
receive a larger percentage of complete premarket submissions the
first time around. This will avoid the need for additional
information requests which are time and resource consuming for
both FDA and manufacturers. In addition, the guidance has been
updated to be consistent with emerging international consensus
standards such as International Electrotechnical Commission (IEC)
601-1-4 and International Organization for Standardization (ISO)
9001 and ISO 9000-3, and the proposed new Good Manufacturing
Practices (GMPs).

A preview of the new guidance was presented May 17, 1995, during
the Indiana Medical Device Manufacturers Council (IMDMC) Seminar
on the Development of Medical Device Software in a Regulated
Environment and again on September 21, 1995 during the 19th
Annual Regulatory Affairs Professional Society (RAPS) Exhibition
and Conference. In addition, the independent reviewers listed on
page iii provided invaluable feedback during the informal review
of draft version 1.1 of this document. A short course,
explaining how to use this guidance document is being coordinated
through the FDA Center for Devices and Radiological Health (CDRH)
Staff College.

1.3 Scope.

The new software guidance applies to all types of premarket

Draft Version 1.3 12 August 1996
CDRH Use Only

1-2

submissions: premarket notifications (510(k)), premarket
applications (PMAs), and investigational device exemptions
(IDEs). The previous guidance indicated that is was for 510(k)
submissions. However, in practice it was used for PMA and IDE
submissions as well since no software guidance existed for these
types of submissions. Differences in the types of information to
be submitted and how it is evaluated are noted in the text.

In general, this guidance applies to all software which is used
in medical devices. This includes:

1) software which is embedded in medical devices, i.e.
firmware;

2) software which requires operator interaction, such as
setting parameters or selecting modes; and

3) software accessories as defined in the draft software
policy.

(Note: these categories are not necessarily mutually exclusive.)
While the same development lifecycle and risk management
activities apply, from a premarket regulatory perspective at
present it excludes pure hospital information systems, such as
billing records, and manufacturing process control software.
(See B.13)

1.4 Intended Audience.

This guidance is intended for use by scientific reviewers within
the FDA CDRH Office of Device Evaluation (ODE) who review medical
device software, FDA Office of Regulatory Affairs (ORA)
Investigators, and the medical device industry.

1.5 Document Organization.

This document is divided into four normative sections and six
informative appendices. The terms normative and informative are
used the same way as in international standards: normative -
strongly encourage; informative - useful background information.

- Section 1, which is normative, describes the purpose,
background, scope, intended audience, document organization,
relationship to other documents, and terminology.

- Section 2, which is normative, discusses software risk
management activities.

- Section 3, which is normative, explains the level of concern
determination and how it relates to the documentation in and

Draft Version 1.3 12 August 1996
CDRH Use Only

1-3

review of a premarket submission.

- Section 4, which is normative, identifies key informational
elements of a premarket submission.

- As a supplement to Section 2, Appendix A provides more detail
about development life cycle activities and software
engineering practices. This appendix is informative.

- Special topics and unique technological issues currently
facing the FDA and industry are examined in Appendix B. This
appendix is informative.

- Appendix C provides a sample checklist and common requests
for reviewers and manufacturers to use during the premarket
review process. This appendix is informative.

- Appendices D and E cite current relevant national and
international consensus standards and texts related to
software engineering, quality assurance, risk management and
lifecycle methodologies. Reviewers and manufacturers should
refer to these sources for more in-depth information, since
that information is not duplicated in this guidance. These
appendices are informative.

- The "FDA Glossary of Computerized System and Software
Development Terminology", developed by the ORA Division of
Field Investigations (DFI), appears in Appendix F. Since
many of the terms used in the software field have multiple
definitions, this appendix is designed to provide a reference
for terms only as used in this document. This appendix is
informative.

1.6 Relationship to Other Documents.

This publication is a guidance document, not a standard. FDA and
device designers use guidance documents to provide a means, among
possible others, to meet regulations and policy, as shown in
Figure 1-1. National and international consensus standards, such
as those cited in Appendix D, are viewed as tools for
demonstrating compliance with regulations.

Since this guidance addresses a cross-cutting issue, it is
intended to complement device specific guidance by providing
additional detailed software information.

Draft Version 1.3 12 August 1996
CDRH Use Only

1-4

1. Mission ---> Protect the public health

2. Law(s) ---> SMDA 1990, MDA 1992, ...

3. Regulation(s) ---> 21 CFR xxx

4. Policy/Guidance ---> ODE Guidance for the ...

5. Standards ---> IEC 601-1-4, ...

Figure 1-1. U.S. Regulatory Hierarchy for Medical Device
Software.

1.7 Terminology.

FDA guidance documents by definition do not establish legally
binding requirements. A guidance document is published as
providing a means, but not the only means, of showing compliance
to regulations which are very general in nature. The terms
"should" and "must" are used in this document. However, they
should be interpreted as "should" or "must" from a theoretical or
technical perspective -- not a legal perspective.

Draft Version 1.3 12 August 1996
CDRH Use Only

 - FDA’s published "Guideline on the General Principles of1

Process Validation" defines validation as “Establishing
documented evidence which provides a high degree of assurance
that a specific process will consistently produce a product
meeting its predetermined specifications and quality attributes.”
This definition encompasses both “verification” and “validation”
activities as used in this guidance document. This guidance
document uses the terms “verification” and “validation”
activities as defined in ISO 8402 and used in IEC 601-1-4, which
is a common practice for the computer industry.

2-1

SECTION 2. Software Risk Management Activities

This section provides an overview of risk management activities
that occur during the software development lifecycle. This
section, which is normative, corresponds to IEC 601-1-4. This1

correspondence will assist U.S. manufacturers intending to export
to Australia, Canada, the European Union, and Singapore. It will
also assist ODE scientific reviewers to evaluate submissions for
products developed in accordance with this standard.
Manufacturers may chose to follow another standard. However,
they would need to demonstrate how that standard corresponds to
this guidance document. More detailed information about the
development lifecycle is provided in Appendix A, which is
informative.

2.1 Lifecycle Models and Development Methodologies.

Manufacturers are responsible for selecting, justifying and
following a particular lifecycle model and software development
methodology. Many software development models are acceptable.
Terminology from model to model and methodology to methodology
may vary. A generic lifecycle model is depicted in Figure 2-1.
Note that the software development lifecycle is a microcosm of
the entire device development lifecycle. It is feasible to
intermix lifecycle methodologies between subsystems and
subcomponents (i.e., hardware, software, materials, ...).

The Agency looks for four particular characteristics in any
lifecycle model:

1) distinct phases with associated work products;

2) feedback of technical and schedule information among
the phases;

3) verification and validation activities return to the
source of the error, not necessarily the previous

Draft Version 1.3 12 August 1996
CDRH Use Only

2-2

phase, and look at adjacent and similar areas in the
software for associated errors; and

4) development lifecycle and risk management activities
are fully integrated.

Figure 2-1. Generic Software Development Lifecycle Model.
(Adapted from IEC 601-1-4 Figure DDD.1.)

2.2 Requirements Analysis and Specification.

The first phase for any medical device software is to identify
and analyze customer or end-user functional and performance
requirements. This involves the development of specifications
which detail risk-related functions and identify the safety
integrity measures necessary to control risks for the medical
device software. It is important to define the role of the
software in the device at this time, in particular with regard to
risk-related functions. Prototypes can be useful in clarifying
the accuracy and completeness of requirements. This is an
appropriate time to start writing a preliminary operator's
manual.

2.3 Architectural Analysis and Specification.

The second phase is architectural decomposition and analysis.
During this phase functional and safety requirements are

Draft Version 1.3 12 August 1996
CDRH Use Only

2-3

allocated to the various subsystems and subcomponents. The role
of software in risk control measures should be defined.
Manufacturers are responsible for selecting and justifying
architectural considerations such as redundancy, diversity,
failure rates and modes, diagnostic coverage, common cause
failures, systematic failures, test interval and duration,
maintainability, data security and privacy. They should explain
how and why these architectural considerations were incorporated;
documenting the decision making process. For example, how was
redundancy implemented and why; or why was it not incorporated.

2.4 Design and Development.

The logic used in performing the design is captured at all
levels. These activities develop detail designs of algorithms
which are recorded in a detail design specifications. The target
and development hardware platforms, operating systems, tools used
(such as compilers, linkers, and automated software engineering
tools) are part of this specification. The detail design of
interfaces with devices (such as sensors, actuators, and human
factors issues (see B.10)) are documented in this specifications.
The decision making process (especially the detail designs of
interfaces with devices), which is documented in the
specification, should explain how and why these design
considerations were incorporated. The source, object, and
executable code with supporting documentation are written.

2.5 Verification Activities.

Verification activities should evaluate the realization of the
safety objectives and verify the correct implementation of
functional and safety requirements. Test specifications for the
software system and each of its subsystems and subcomponents are
developed. The results of verification activities should be
documented, analyzed, and interpreted; e.g. a discussion of why
observed results were considered acceptable -- not just that they
passed.

There are two special concerns in regard to verification
activities: 1) the use of off-the-shelf (OTS) software products
(see B.6), and 2) encouraging the use of complementary analysis
and verification techniques. The use of OTS software products is
being encouraged by industry. Solely performing verification on
commercial software products is not sufficient for acceptance in
safety critical applications. Verification and validation
activities should evaluate the safety, reliability, and integrity
of the OTS product and its intended use in medical device
software, and allow for appropriate safeguards to be designed and
developed for the device. See Appendix B.11 for a thorough
discussion of issues related to OTS.

Draft Version 1.3 12 August 1996
CDRH Use Only

2-4

The second concern is encouraging the use of multiple
complementary analysis and verification techniques, as shown in
Figure 2-2. By using multiple techniques, a larger number and
different types of errors will be uncovered; thereby enhancing
software safety and reliability. (Note: Figure 2-2 is only an
example; manufacturer's schemes may differ.)

ANALYSIS FUNCTIONAL LOGICAL

Dynamic Traditional Testing: Trajectory-based testing
 module Structured Basis testing
 subsystem Branch testing
 system integration Path testing
 stress
 regression

Static Formal Scenario Analysis Petri Nets
Code Inspections Timing Analysis
Cleanroom Analysis Testability Analysis
HAZOP Analysis Critical Path Analysis

Formal Methods, Proofs
Modelling
Software FTA, FMEA, ...

Figure 2-2. Complementary Analysis and Verification
Techniques.

2.6 Validation Activities.

Validation activities demonstrate that the safety requirements
have been implemented correctly as specified. During validation
the results observed should be documented, analyzed, and
interpreted. This is an opportunity for the manufacturer to
demonstrate that the device has been adequately validated. (See
A.6.)

2.7 Configuration Management and Change Control.

Modifications will occur during the development lifecycle, after
a device is fielded, and as a product line matures.
Modifications may take the form of requirements changes, design
changes, corrections, or enhancements. The extent and nature of
the modifications will determine whether: (1) they can be
accommodated by configuration management and change control
procedures; or (2)the activities of the entire development
lifecycle apply. Of primary concern is the adequacy of the
management and control of risk resulting from changes to the
software. (See B.4.)

Draft Version 1.3 12 August 1996
CDRH Use Only

2-5

2.8 Risk Management.

Comprehensive risk management is a combination of risk analysis
and risk control activities which are ongoing throughout the
development lifecycle. Several national and international
consensus standards, such as those cited in Appendix D.2, can
assist manufacturers during this process.

2.8.1 Risk Analysis Activities.

Risk analysis begins with the identification of all potential
hazards for a device. A variety of inductive and deductive
techniques should be used to perform the risk analysis, as cited
in Figure 2-2. In general, different techniques will be used
during different phases of the development lifecycle as more
becomes known about the end product. The severity of each
hazard, should it occur, is then assessed qualitatively. (IEC
601-1-4 defines the categories of severity as: negligible,
marginal, critical, and catastrophic.)

A device may have multiple potential hazards associated with it.
Likewise, each hazard may have multiple potential causes. All
potential causes for each hazard should be identified. The
estimated likelihood of each hazard occurring is then assessed,
either qualitatively or quantitatively. The methods used to
identify hazards and their causes, estimate the likelihood, and
categorize severity should be documented.

2.8.1.1 Estimating the Likelihood and Severity of Hazards.

Risk analysis activities should lead to an identifcation of
hazards and an associated risk of each hazard. This involves
estimating the likelihood that the hazard will arise, estimating
that the hazard will cause a mishap, and estimating the severity
of the mishap.

The likelihood of a hazard can be estimated in different ways.
Some examples are:

1) estimation through known problems associated with a
specific technological issues or information through
literature;

2) estimation through experience/engineering judgement in
using a technology; and

3) estimation through review process when the likelihood
is purely an estimate based on knowledge of team and/or
technology.

Draft Version 1.3 12 August 1996
CDRH Use Only

 - Sommerville, Ian; “Software Engineering”; Chapter 22

2-6

The reason the likelihood of a hazard is usually estimated is
that calculating specific probablilities of occurance for a
particular hazard is difficult, if not impossible, depending on
the circumstances which contribute to the hazard. This estimate
should be used to drive the level of risk analysis and control
for a particular hazard when information or engineering judgement
reasonably shows a particular concern for a hazard .2

2.8.2 Risk Control Activities.

Risk reduction and mitigation techniques are employed to control
the severity of a hazard and/or the likelihood of it occurring.
The order of precedence for risk control activities is:

1) reduce the risk by inherent safe design or redesign,

2) reduce the risk by protective measures, and

3) reduce the risk by sufficient warnings.

These activities are often used in conjunction with each other
for high risk and/or complex devices.

A determination is made about the appropriateness of the residual
risk for each hazard/cause combination. Following this, a
determination is made as to whether or not the risk control
measures introduced any new hazards. If so, the process is
repeated. Referring to Figure 2-3, steps 2 through 7 are
repeated for each potential hazard while steps 4 through 6 are
repeated for each potential cause. After all potential hazards
have been evaluated, a final determination is made about the
device safety. Several work products result from the ongoing risk
management process. A hazard analysis by itself is not
sufficient. Manufacturers should also document:

- what hazard analysis techniques were used;

- what the estimated likelihood of each hazard occurring
is and how it was estimated;

- what the estimated severity of each hazard is and how
it was categorized;

- what risk reduction and mitigation techniques were
implemented and how their effectiveness was assessed;
and

- testing and evaluation demonstrating the implementation
of the safety features.

Draft Version 1.3 12 August 1996
CDRH Use Only

2-7

Figure 2-3. Risk Management Process. (Adapted from IEC

Draft Version 1.3 12 August 1996
CDRH Use Only

2-8

601-1-4 Figure CCC.2.)

A standard risk management template, such as that shown in Figure
2-4, can be used to document this information. Sections 2
through 12 are repeated for each hazard, while Sections 5 through
11 are repeated for each cause.

 RISK ANALYSIS
1. Hazard analysis technique(s):________________________

2. Hazard(s)identified:_________________________________

3. Maximum tolerable risk:______________________________

4. Severity category (negligible, marginal, critical,
catastrophic):_______________________________________

4.1 Can a failure be detected before a hazard occurs?____
During what interval?________________________________

4.2 What techniques have been employed to reduce the
severity of the hazard?______________________________

5. Cause(s) (software, hardware, etc.)__________________

6. Likelihood using best engineering judgement or
available data (incredible, improbable, remote,
occasional, probable, frequent):_____________________

6.1 Does the hazard occur in the absence of a failure, in
failure mode only, or in multiple failure mode only?

6.2 What techniques have been employed to reduce the
likelihood of the hazard?____________________________

7. Estimated residual risk?_____________________________

Draft Version 1.3 12 August 1996
CDRH Use Only

2-9

Figure 2-4. Standard Risk Management Template: Part I - Risk
Analysis. (Adapted from IEC 601-1-4 52.201.3.)

Keep in mind that risk analyses should be performed for the
device as an entity. Appropriate techniques must be chosen so
that hazard analyses for the software, electronics, biomaterials
and so forth, can be effectively integrated and analyzed at the
device level as well.

 RISK CONTROL
8. Minimum safety control requirement___________________

9. Implemented safety control___________________________

10. Safety integrity (likelihood of a safety-related
system satisfactorily performing the required safety
functions under all the stated conditions within a
stated period of time)_______________________________

11. Verification activities______________________________

12. Validation activities________________________________

Figure 2-4. Standard Risk Management Template: Part II - Risk
Control. (Adapted from IEC 601-1-4 52.201.3.)

Draft Version 1.3 12 August 1996
CDRH Use Only

3-1

SECTION 3. Level of Concern

FDA/CDRH uses the term "level of concern" to mean the severity of
risk that a device could permit or inflict (directly or
indirectly) on a patient or operator as a result of latent
failures, design flaws, or using the medical device software.
The extent of the regulatory review process is proportional to
the level of concern. Therefore, it is important to clarify the
role of software in causing, controlling, and/or mitigating these
types of events. Manufacturers should state: 1) the level of
concern for the software and the device; and 2) how the level of
concern was determined. This section provides suggested
evaluation criteria that should be used to establish the level of
concern for computer-controlled medical devices; it is normative.
This approach should also be used in determining the severity of
each hazard identified in the hazard analysis.

3.1 Background.

Risk(s) from potential failures or possible design flaws is a
concern during the review of medical device premarket submissions
containing software. Inadequate or inappropriate software
development lifecycle and risk management activities,
inappropriate use of a medical device, and/or operational errors
could lead to unsafe or ineffective delivery of energy, drugs,
life-supporting or life- sustaining functions, or to incorrect or
incomplete information causing a misdiagnosis or selection of the
wrong treatment or therapy.

The level of concern for medical device software varies over a
continuum. Accordingly, it is essential that the criteria on
which to determine the level of concern be straightforward. If
level of concern determinations have already been made for
specific devices and review criteria are already established by
Division management, Division review procedures, and/or by the
Office of Device Evaluation, they would take precedence.

Various national and international consensus standards and
references (Appendices D and E) classify the severity of risk on
an incremental scale. This is helpful for determining the
appropriate degree of rigour and the kinds of risk management
activities that should be performed. We encourage manufacturers
to use the risk identification and control techniques promoted in
standards and references.

3.2 Approach Recommended by FDA.

As mentioned in Section 2, the two components of risk estimation
are likelihood and severity. The correlation of likelihood and

Draft Version 1.3 12 August 1996
CDRH Use Only

3-2

severity is used to determine the acceptability of risk during
both: 1) the initial risk analysis; and 2) the assessment of
residual risk after risk control measures have been implemented.
This correlation yields three risk regions: unacceptable, as low
as reasonable practicable (ALARP), and broadly acceptable. To
illustrate, a potential risk that occurs frequently but has
negligible severity is considered broadly acceptable; while, a
risk that occurs occasionally but has a catastrophic severity is
unacceptable. (See Figure 3-1.)

Furthermore, it is indicated in IEC 601-1-4 that device specific
standards in the IEC 601-2-x series should also be consulted when
determining the acceptability of residual risk. Accordingly,
FDA/CDRH has developed the concept of level of concern. The
approach discussed below explains how to determine into which
region a risk falls, with a higher level of concern equating to
the ALARP region and a lower level of concern equating to the
broadly acceptable region.

Figure 3-1. Risk Regions. (Adapted from IEC 601-1-4 Figure
BBB.1.)

The approach to determining level of concern yields either a
higher or a lower level of concern. The purpose of the higher
and lower categories is to streamline the review process into two
categories that are easy to differentiate and understand by both
reviewers and industry. The level of concern determination is

Draft Version 1.3 12 August 1996
CDRH Use Only

3-3

being streamlined for review purposes only. The medical device
software function and associated risk will dictate the scope of
the review.

3.2.1 Definitions.

Definitions associated with the lower and higher level of concern
relate to the consequences if the software were to fail:

Lower - The level of concern is lower if latent failures or
design flaws (direct or indirect) would not be expected to
result in death or serious injury. This corresponds to the
broadly acceptable region in IEC 601-1-4 Figure BBB.1. (See
Section 3.2.)

Higher - The level of concern is higher if latent failures or
design flaws (direct or indirect) could result in death or
serious injury. This corresponds to the ALARP region in IEC
601-1-4 Figure BBB.1. (See Section 3.2.)

Serious injury, as defined in the final Medical Device
Reporting (MDR) regulation in the Code of Federal Regulations
21 CFR 803.3 (aa), means an injury or illness that:

i. is life threatening,

ii. results in permanent impairment of a body function or
permanent damage to a body structure, or

iii. necessitates medical or surgical intervention to
preclude permanent impairment of a body function or
permanent damage to a body structure.

Permanent means for the purposes of this subpart,
irreversible impairment or damage to a body structure
or function excluding trivial impairment or damage.

3.2.2 Decision Process.

The level of concern for medical device software may be
determined using the following process made up of five key
questions which are asked in sequence. If the answer to any one
(or more) of them is yes, the software is of higher level
concern. Note: the software may have the same or lower level of
concern than the device, but not higher. If the answer to any
question is no, continue on to the next question. (Refer to
Figure 3-2).

1. Does the device software control a life supporting or
life sustaining device?

Draft Version 1.3 12 August 1996
CDRH Use Only

3-4

2. Does the device software control the delivery of potentially
harmful energy which could result in death or serious injury,
such as radiation treatment systems, defibrillators and so
forth?

3. Does the device software control treatment delivery, such
that an error or malfunction with the delivery could result
in death or serious injury?

4. Does the device software provide diagnostic information on
which treatment or therapy is based, such that if misapplied
it could result in serious injury or death?

If yes, then the device may be of a "higher" level of
concern, especially in cases where diagnostic information
would be misleading or inaccurate, or unsuitable licensed
biologic products are released. These situations may result
in serious injury to the patient through an improper
diagnosis of a serious medical condition or improper
treatment.

A device may provide data for which it is unlikely that the
clinician will exercise independent judgement. In this case,
two scenarios may arise:

Higher: a system releasing HIV infected blood without user
knowledge or treating a patient with potentially
harmful drugs/therapy for a particular illness or
condition based on incorrect results from a
medical device that are difficult or impossible to
detect or override; and

Lower: a system providing incorrect diagnostic
information which is easily detected and
overridden based on patient demographics,
symptoms, and other tests.

In the latter case, one in which clinical judgement would be
exercised to override the information provided by a medical
device (even in cases of incorrect data), the device would be
considered one of lower level of concern.

5. Does the device software provide vital signs monitoring and
alarms for potentially life threatening situations in which
intervention is necessary?

In conclusion, reviewers should expect reasonably complete
evidence to support the level of concern determination for
medical device software. (See Section 4.1.1.)

Draft Version 1.3 12 August 1996
CDRH Use Only

3-5

+))),
* +))))))))))))))))))), *
* * Does the * *
* * device * *
* * software: * *
* .))))))))0))))))))))- *
* * *
* * *
* +))))))))2)))))))))), *
* * 1.0 * *
* /)))))))))))))))))))1 *
* *Control a life * *
* *supporting or * *
* *sustaining device? * *
* .))))))))0))))))))))- *
* yes * *
* +<)))))))))))))))))))))))))1 *
* * +))))))))2)))))))))), *
* * * 2.0 * *
* * /)))))))))))))))))))1 *
* * *Control delivery of * *
* * *harmful energy? * *
* * * * *
* * .))))))))0))))))))))- *
* * yes * *
* /<)))))))))))))))))))))))))1 *
* * +))))))))2))))))))), *
* * * 3.0 * *
* * /))))))))))))))))))1 *
* * * Control * *
* * * treatment * *
* * * delivery? * *
* * .))))))))0)))))))))- *
* * yes * *
* /<)))))))))))))))))))))))))1 *
* * +))))))))2)))))))))), *
* * * 4.0 * *
* * /)))))))))))))))))))1 *
* * *Provide diagnostics * *
* * *as a basis for * *
* * *treatment/therapy? * *
* * .))))))))0))))))))))- *
* * yes * *
* /<)))))))))))))))))))))))))1 no *
* * +))))))))2)))))))))), *
* +)2)))))))))))), * 5.0 * +)))))))))))))),*
* * Higher Level * /)))))))))))))))))))1 *Lower Level **
* * of * * Perform vital * * of **
* * Concern * * signs monitoring * * Concern **
* .)0))))))))))))- .))))))))0))))))))))- .))))))))))))0)-*
* * yes * no * *
* .<)))))))))))))))))))))))))2))))))))))))))))))))))))))) >- *
.)))-

Figure 3-2. FDA's Approach to Deciding Level of Concern.

Draft Version 1.3 12 August 1996
CDRH Use Only

4-1

SECTION 4. Documentation in a Premarket Submission

Premarket submissions for computer-controlled medical devices
should contain documentation consistent with the level of
concern, intended use of the device, and type of premarket
submission. This section provides a checklist of the items for
review (4.1) and discusses how this may be affected by the level
of concern (4.2). This section also discusses the differences
between the types of premarket submissions (4.3) and the impact
of software and system changes (4.4). This section is normative.

Risks, complexity, design issues, technology, and methodology
vary widely across the medical device and manufacturer spectrum.
Hence, the information presented is generic and may be more or
less rigorous than what is necessary for a specific device under
review. Reviewers should: 1) use professional discretion in
reviewing a computer-controlled medical devices; 2) follow any
guidance provided by ODE management, Division management, and/or
device-specific guidance; and 3) consult with other reviewers who
are knowledgeable about software engineering practices.

Manufacturers are encouraged to contact the corresponding
FDA/CDRH ODE division prior to making a submission to obtain any
additional pertinent information. This will promote more
complete initial submissions. Also, consult Appendix C for
examples of boilerplate questions and a review items checklist.

4.1 Review Items.

This subsection identifies items that should be considered when
reviewing a computer-controlled medical device. Other issues
which may be relevant when reviewing a computer-controlled device
are discussed in Appendix B. The review items listed following
each subsection of 4.1 represent the high-end of information.
Each list is preceded by the standard phrase: "some items to
consider, when appropriate, are". This indicates that not all
items may apply to all devices or that the list is exhaustive.
If the information discussed in this section is not submitted for
the device under review, then adequate justification should be
submitted in lieu of the data unless it is obvious that the
information is not pertinent.

The wording in this section is not intended to imply any specific
document structure but instead data needed to make a
determination. The manufacturer is free to organize their
documentation in any manner needed for their internal operation.
Data submittals could include electronic media where appropriate

Draft Version 1.3 12 August 1996
CDRH Use Only

4-2

provisions and negotiations with the FDA have been provided.

There are five major components of a premarket submission for a
device containing software. They include information about the
level of concern, descriptive data about the development and
intended operational environment, labeling, development lifecycle
activities, and risk management activities. This information is
summarized in Figure 4-1.

4.1.1 Level of Concern.

The first component is the level of concern. As mentioned in
Section 3, FDA/CDRH uses this term to mean the severity of risk
that a device could permit or inflict (directly or indirectly) on
a patient or operator as a result of latent failures, design
flaws, or using the device. Documentation should be consistent
with the level of concern for the device under review. The
contribution of software to the hazard shall be clearly
documented and explained. The analysis used to arrive at the
level of concern should be included. Manufacturers should state
the level of concern for each identified hazard, which hardware
and software components contribute to the hazard and how the
level of concern for each component was determined, using Figure
3-2 as a template.

4.1.2 Descriptive Data.

The second component is descriptive data about the software
development environment and intended operational environment.
This should include a list of the:

a. hardware platform;

b. operating system;

c. compiler;

d. any simulators, emulators, off-the-shelf-software (OTS)
and automated software engineering (ASE) tools used;
and

e. concurrent applications, anticipated system load, and
indication of single or multi-user mode.

Draft Version 1.3 12 August 1996
CDRH Use Only

4-3

FDA SOFTWARE GUIDANCE IEC 601-1-4 REFERENCE

4.1.1 Level of Concern 52.204.3.2
each hazard
device
how it was determined 52.204.3.2.3,

52.204.3.2.4

4.1.2 Descriptive Data
development environment 52.207
intended operational 52.208
environment

4.1.3 Labeling
intended use
instructions for use 6.8.201
known non-hazardous anomalies 6.8.201

4.1.4 Development Lifecycle Activities 52.203
requirements specifications 52.206
architecture analysis 52.207
design specification 52.208
test specification 52.208
verification plan 52.209
validation plan 52.210
analysis of validation 52.210.6
results 52.201.2,
configuration management and 52.211
 change control 52.212
compliance assessment report

4.1.5 Risk Management
risk management plan 52.202
risk analysis 52.204.3
hazard identification 52.204.3.1.8
method(s) 52.204.3.2
risk likelihood estimation
 and estimation method(s) 52.204.3.2.3
severity estimation and
categorization method(s) 52.204.4
risk control measures 52.204.6
evaluation of effectiveness
 of risk control measures

Figure 4-1. Summary of potential documentation items for a new
premarket software submission.

Draft Version 1.3 12 August 1996
CDRH Use Only

4-4

4.1.3 Labeling.

The third component is labeling, which includes a discussion of
the intended use and instructions for use. The labeling should
be appropriate for the device to ensure that the device can be
used safely and for the purposes for which it is intended.
Labeling of a medical device should be consistent with the
requirements discussed in the FDA/CDRH ODE Blue Book Memo "Device
Labeling Guidance #G91-1", dated March 8, 1991, or newer version.
Some items to consider, when appropriate, are:

 a. Consistency between intended use and software/system
requirements;

 b. Hazardous operating procedures identified in
precautions and proscribed in warnings;

 c. Listing of compatible equipment or additional equipment
required;

 d. Operating and training (e.g. application) manuals;

 e. Instruction and qualification checklist for
installation;

 f. Trouble shooting guide, device configurations, and
error message information;

 g. Listing of known non-hazardous anomalies; and

 h. Current, complete, and understandable instructions for
use.

4.1.4 Software Development Lifecycle Activities.

The fourth component represents the documentation or work
products from each of the development lifecycle phases and
reflects ongoing configuration management and change control
procedures. Figure 4-2 represents a general layout of the
software development process. Keep in mind that it is the
informational content of the work products that is important;
i.e. work products do not necessarily represent separate
documents.

Draft Version 1.3 12 August 1996
CDRH Use Only

4-5

PHASE
INPUTS ACTIVITY VERIFICATION WORK PRODUCTS

Requirements - system - define software - review of - software
Analysis and requirements quality requirements requirements
Specification - project, risk characteristics - assess adequacy specification

management, - generate and - safety
and software appropriateness traceability
development requirements of safety matrix
plans - identify safety - review - requirements

- software QA requirements functional test traceability
and - begin cases and plans matrix
requirements developing test - assess quality - preliminary
standards plans and cases attributes hazard

analysis
- functional

test cases
and plans

- preliminary
user’s manual

Architectural - system - allocation of - evaluate and - software
Analysis and requirements requirements review architecture
Design - software - develop sub- architecture and and design

requirements system, design documents
- preliminary component, - assess adequacy - verification

hazard interface, data and activities
analysis structure appropriateness reports,

- project, designs of safety design review
risk, and - modular - review test documentation
development decomposition cases and plans - updated
plans - design test - assess quality traceability

- software QA plans/cases attributes matrices and
and hazards
architectural analysis
/ design - test cases
standards and plans

Development - software - develop source, - code - source code
requirements/ object, and walkthroughs and and all
design executable code inspections supporting

- project, risk with supporting - static and documentation
management documentation dynamic analyses - verification
and - debug - unit/module/ activities
development - design test subsystem reports
plans plans/cases testing - updated

- software QA - safety/failure traceability
and coding analyses matrices and
standards - review test, hazard

data, cases, and analysis
plans - testing

- assess quality documentation
attributes

Test - test cases - unit/module/sub - review and - verification
and plans system analysis of activities

- source/execut - integration testing report
able code - performance, - review testing - resting

- software QA, stress, and traceability documentation
risk functional, to requirements, - verification
management structure, functional, and
plan and test fault, safety, performance, and validation
completion system, and safety report
criteria beta tests - assess quality - safety
standards attributes assessment

report

Figure 4-2. Relationship between generic development lifecycle
phases and work products.

Draft Version 1.3 12 August 1996
CDRH Use Only

4-6

4.1.4.1 Lifecycle Model.

Documentation should be consistent with the software development
lifecycle model, software engineering methods and practices.
Some items to consider, when appropriate, are:

a. Discussion of software development lifecycle model,
methodologies and policies;

b. Discussion of the graphical, symbolic, and notational
models that are conventional for the analysis and
design method used;

c. Discussion of error logging and tracking;

d. Results of design reviews, code walkthroughs, software
audits, and independent verification and validation;
and

e. Discussion of configuration management and change
control procedures.

4.1.4.2 Specifications.

Specifications resulting from requirements analysis, architecture
analyses, and design tradeoff analyses or analysis or
alternatives should be developed and maintained for the device
and each of its subsystems and subcomponents. Tables, charts,
diagrams, and/or calculations should be used to present the
information contained in specifications wherever possible;
certain information can be conveyed more concisely this way.
Documentation should provide a clear and consistent description
of system and software requirements. Some items to consider,
when appropriate, are:

a. Hardware requirements;

b. Performance, functional, and safety requirements;

c. Algorithms for therapy, diagnosis, monitoring, and
interpretation (with citations);

d. Device limitations due to software;

e. Internal software tests and checks;

f. Error and interrupt handling;

g. Timing requirements; and

h. Communication protocols.

Draft Version 1.3 12 August 1996
CDRH Use Only

4-7

4.1.4.3 Verification and Validation Activities.

Verification and validation activities should provide
traceability to software and device requirements. The test
report should explain what level of test coverage was necessary
for the device and how it was achieved. The results of
verification and validation activities should be analyzed and
interpreted. Some items to consider, when appropriate, are:

a. System level test protocol with pass/fail criteria;

b. Verification and Validation report discussing how the
phases and methods used demonstrate that requirements
were met;

c. Results and analysis of the following (when
appropriate):

- Fault, alarm, and hazard testing;

- Error, range, and boundary value testing;

- Timing analysis;

- Special algorithms;

- Path analysis and branch testing;

- Stress testing;

- Testing of all device options, accessories, and
configuration(s);

- Communications testing;

- Memory utilization testing;

- Verification of OTS software;

- Acceptance and beta site testing;

- Estimation of residual defects;

- Regression testing; and

- Test completion criteria, including test case
approach and design.

4.1.4.4 Compliance Assessment Report.

In a compliance assessment report, manufacturers should report

Draft Version 1.3 12 August 1996
CDRH Use Only

4-8

any national and/or international consensus standards that were
used during the software development lifecycle and how compliance
to these standards was demonstrated.

4.1.5 Risk Management Activities.

The fifth component represents the documentation or work products
resulting from risk management activities. A hazard analysis by
itself is not sufficient. Manufacturers should also document:
the hazard analysis techniques used; the estimated likelihood of
each hazard occurring and how it was estimated; the estimated
severity of each hazard and how it was categorized; and risk
reduction and mitigation techniques implemented and how their
effectiveness was assessed. (IEC 601-1-4 Figure BBB.1 defines
the categories of likelihood as being: frequent, probable,
occasional, remote, improbable, and incredible.) A standard risk
management template, such as that presented in Figure 2-4 can be
used to document this information. Hazard analyses should be
performed for the device as an entity. Appropriate techniques
must be chosen so that hazard analyses for the software,
electronics, biomaterials and so forth can be effectively
integrated and analyzed at the device level as well.

4.2 Level of Documentation.

The extent and nature of a review and its supporting
documentation is proportional to the level of concern for the
software. Two levels were identified in Section 3: lower and
higher. As stated previously the level of concern is a
continuum, not discrete levels. Software of lower level of
concern will not involve the same level of review as higher level
of concern software. The documentation submitted for lower level
of concern software may be more summary in nature, while higher
level of concern software should contain more descriptive data
and analysis regarding the development lifecycle activities. The
following scenarios explain how to use the review criteria
established in 4.1 for device software of varying levels of
concern.

4.2.1 Lower Level of Concern Software.

A submission for lower level of concern software should include
the information identified in 4.1.1 Level of Concern, 4.1.2
Descriptive Data, 4.1.3 Labeling, and 4.1.5 Risk Management
Activities. Safety-critical and performance-critical functions
should be highlighted and discussed in the requirements
traceability matrix and in the test analysis report. (See Figure
4-1.)

Information provided for development lifecycle activities (4.1.4)
may be more summary in nature and demonstrate: 1) that an

Draft Version 1.3 12 August 1996
CDRH Use Only

4-9

appropriate software lifecycle model was followed; and 2) that an
appropriate development environment utilized, for the device
under review. (See Figure 4-1.)

Some software development information listed in 4.1 may not be
appropriate for a lower level concern device; if so, this should
be adequately explained and justified by the manufacturer.

4.2.2 Higher Level of Concern Software.

A submission for higher level of concern software should include
the information identified in 4.1.1 Level of Concern, 4.1.2
Descriptive Data, 4.1.3 Labeling, and 4.1.5 Risk Management
Activities. Safety-critical and performance-critical functions
should be highlighted and discussed in detail. (See Figure 4-1.)

In contrast to lower level of concern software, information
provided for development lifecycle activities (4.1.4) for higher
level of concern software would be more descriptive and detailed
and include more analysis and interpretation of results. In some
cases, a more detailed requirements specification for high risk
software with major areas of concern and more detailed
verification and validation information would be reviewed to
provide a proper assessment of software performance, safety, and
reliability. This information should demonstrate that an
appropriate software lifecycle model was followed and development
environment utilized. (See Figure 4-1.)

Refer also to guidance developed for specific devices and
established review procedures in the corresponding FDA/CDRH ODE
Division. Manufacturers are encouraged to contact the
corresponding FDA/CDRH ODE Division prior to submitting data to
obtain information about device specific guidance and established
review procedures.

4.3 Types of Submissions.

It is not within the scope of this document to discuss
differences between a premarket notification or 510(k), an
investigational device exemption (IDE), and a premarket approval
application (PMA). However, there are differences that should be
noted and taken into consideration when reviewing software
documentation for a device.

4.3.1 Premarket Notification - 510(k).

Because a 510(k) is intended to demonstrate substantial
equivalence, performance and safety should be assessed and
compared to the device for which substantial equivalence is
claimed. When a new intended use or new technology is involved,
then documentation should be reviewed in order to determine if:

Draft Version 1.3 12 August 1996
CDRH Use Only

4-10

1) new software questions are raised regarding safety or
effectiveness; or 2) the data and information provided
demonstrate that there are no new software issues of safety and
effectiveness. See Appendix B regarding the need for clinical
data for a new indication, technology that differs from the
predicate device or new algorithm for therapy, diagnosis, or
monitoring.

4.3.2 Investigational Device Exemption - IDE.

An IDE is submitted for significant risk devices. This suggests
that the software review for a device in an IDE should be
consistent with a device of higher level of concern. Because
some IDEs involve feasibility studies and not a definitive
clinical trial, it may not be possible for the manufacturer to
submit complete documentation for a final product as listed in
4.1. However, the information submitted should be consistent with
the device configuration used in the feasibility study and should
provide sufficient assurance that the software will perform
safely and reliably. Manufacturers planning such studies should
contact their corresponding FDA/CDRH ODE reviewer and/or Division
management prior to submitting an IDE for a feasibility study to
discuss/review criteria for an acceptable level of documentation
and testing.

Software documentation for an IDE which is beyond the feasibility
study phase should remain consistent with the checklist provided
in 4.1. It should reflect the configuration of the device to be
used in the definitive clinical trial. Because an IDE is for a
device in its developmental stages, configuration management,
error logging, change control, and software maintenance are
vital. Information associated with these activities should be
reviewed carefully.

4.3.3 Premarket Approval Application - PMA.

In a PMA a manufacturer is demonstrating the safety and
effectiveness of a device. Most PMA devices are class III
because they were either not available prior to the device
amendments or the risks associated with them are consistent with
the controls required for a class III device. Because of the
potential higher risk of a class III device, the majority of
devices reviewed in a PMA submission will be of a higher level of
concern. Many of these devices will also have been submitted
under an IDE when undergoing a clinical study. Software
documentation submitted in a PMA should include all of the
information discussed in 4.1.

4.4 Software Changes and Modifications.

Changes to a device could include new functionality, corrections,

Draft Version 1.3 12 August 1996
CDRH Use Only

4-11

and/or migration to new technology. Documentation for changes to
a device builds upon that originally submitted. (See Figure 4-
3.) The documentation in a premarket submission should reflect
the current version of the software and revision history since
many minor changes and corrections that do not affect safety and
effectiveness occur during a product's lifecycle. The
information submitted builds upon that which was submitted in
the original document. It should include a description of the
changes, what was changed, why it was changed and how the changes
affect safety and reliability. The design, functionality,
intended use, operation, performance, and safety and reliability
features of the new and predicate device should be compared.
Traceability between the development lifecycle and risk
management activities for the new and predicate device should be
demonstrated. A revision history log should be maintained which
documents chronologically changes made to the device and its
associated lifecycle documentation.

FDA SOFTWARE GUIDANCE IEC 601-1-4 REFERENCE

4.4 Description of Changes
what changed 52.211
why it was changed 52.201.2
impact on safety and reliability 52.201.3

4.4 Comparison of New and Predicate
Device:

design
functionality
intended use
operation
performance
safety and reliability

4.4 Traceability to Previous 52.201.2
development lifecycle & 52.210
risk management activities 52.211

52.212

4.4 Software Revision History affected 52.201.2
development lifecycle/risk
management:

specifications
plans
procedures

Figure 4-3. Summary of potential documentation items for
changes in a premarket software submission.

Deciding when to submit a new premarket submission because of

Draft Version 1.3 12 August 1996
CDRH Use Only

4-12

changes made to the software or system of a medical device is
another question. For further information on this subject
consult the latest version of FDA/CDRH publication "When to
Submit a 510(k) for a Change to an Existing Device." (See
Appendix E.6.)

4.5 Summary.

This section provided a checklist of information to review in
premarket submissions. Depending on the level of concern, the
information may be more summary in nature for a lower level of
concern device or more descriptive and detailed in nature for a
higher level of concern device. This is also true when
modifications, enhancements, and upgrades are made to software.
Regardless of the type of submission being reviewed, the
information submitted should demonstrate:

- How thoroughly the manufacturer analyzed the
safety of hazardous functions and implemented
safety requirements in the system and software;

- How well the manufacturer established the
appropriateness of functions, algorithms, and
knowledge on which the system is based;

- How well the manufacturer assessed the device
reliability;

- Whether appropriate technology is used to mitigate
and/or control hazards, promoting an inherently
safe system; and

- Whether the manufacturer has provided adequate
software documentation to make a final
recommendation about the development, performance,
reliability, and safety of a device.

Draft Version 1.3 12 August 1996
CDRH Use Only

 - FDA’s published “Guideline on the General Principles of3

Process Validation” defines validation as “Establishing
documented evidence which provides a high degree of assurance
that a specific process will consistently produce a product
meeting its predetermined specifications and quality attributes.”
This definition encompasses both “verification” and “validation”
activities as used in this guidance document. This guidance
document uses the terms “verification” and “validation”
activities as defined in ISO 8402 and used in IEC 601-1-4, which
is a common practice for the computer industry.

A-1

APPENDIX A. Software Development Lifecycle Activities.

This appendix, which is informative, provides more detailed
information about the software development lifecycle. The
references in Appendix D and the standards in Appendix E have
been provided for consultation when:

- developing a framework for software development;

- providing software verification and validation oversight
or independent evaluations ;3

- developing and implementing risk management activities;

- conducting software tests;

- performing software documentation reviews; or

- developing, analyzing, and evaluating software products.

It is customary to write a software development plan when
starting a software development project. A software development
plan should identify key activities and objectives for the
project. This may include:

- input and output criteria for each development phase;

- verification and validation activities;

- risk assessment and mitigation;

- types of testing and test completion criteria;

- quality assurance;

- error logging;

Draft Version 1.3 12 August 1996
CDRH Use Only

A-2

- tracking and correction;

- configuration management;

- maintenance; and

- management and personnel requirements and
responsibilities.

The plan may also outline the life-cycle model, schedule,
staffing requirements, project standards, tool usage, testing
requirements, and supporting documentation requirements. It is
useful at this time to develop a system definition of some sort
that clearly describes the problems, goals, constraints,
functions, solutions, and acceptance of what is to be developed
prior to putting together an overall software development project
plan. Of course, the process definition is dependent on the
types of software and risk management activities that are
associated with a particular product line.

A.1 Lifecycle Models and Development Methodologies.

It is difficult to assign a right and wrong methodology to the
set of activities which produce software. Hence, the purpose of
this document is not to specify an exact software lifecycle
model, but to communicate the types of characteristics it should
encompass.

There are a variety of process models, such as: waterfall,
spiral, evolutionary, incremental, top-down functional
decomposition (or stepwise refinement), and formal
transformation. Software products can be produced by any of
these models. However, when risk is involved, as in many medical
devices, the spiral or incremental model may be more appropriate
since it includes integrated risk management activities and
phased feedback processes like the waterfall model. This is not
to say that the spiral or waterfall models must be followed.

Because of the risks involved with many medical devices, rapid
prototyping used to create a quick executable version or
evolutionary development based on laws and principles and not on
development phases with feedback, may not be appropriate. For
this reason, a phased development lifecycle with feedback,
including integrated risk management, is more effective.
However, an evolutionary development may be acceptable in a cycle
of the spiral model in which high system, user interface, or
performance risks are encountered. The response to such a case
may be to suspend, temporarily, the specification of the overall
product for the cycle and to plan for and to develop the next
level of prototyping aimed at resolving the high risk issues.

Draft Version 1.3 12 August 1996
CDRH Use Only

A-3

Generically speaking, a lifecycle model should include a
requirements analysis and specification phase, a design phase, a
development or implementation phase, verification and validation
phases, and a maintenance phase. The bottom line here is that a
software development lifecycle be understandable, thoroughly
documented, results oriented, auditable, traceable and promote
appropriate feedback.

The selection of a software development lifecycle model and
software development methodology depends on a variety of factors.
Likewise, new models and methodologies are continually evolving
with technology. Because of this, it is not practical or logical
in the regulatory environment to mandate a particular model or
methodology; as long as it encompasses general software process
characteristics as previously discussed. Hence, manufacturers
are responsible for making this selection and justifying it.
Manufacturers should choose a development lifecycle and
methodology that are appropriate for their product/product line,
corporate culture, development environment, and knowledge base.
(Figure A-1 illustrates a generic development lifecycle model.)

A.2 Requirements Analysis and Specification.

The first generic phase in any development lifecycle model is to
identify and analyze customer or end-user functional and
performance requirements, as mentioned in Section 2.2. During
this phase, the functions to be performed, controlled, or
monitored by the software are documented in a software
requirements specifications document that is complete,
consistent, and traceable. This information is derived from the
overall system requirements specification and other project and
management plans. Each software requirement should be
verifiable, i.e. traceable throughout development, testable,
complete, understood, and consistent. The software requirements
specifications generated during this phase should serve as the
basis for the software design, and functional test plans and test
cases.

Software safety requirements are derived from the preliminary
hazard analysis and ongoing risk management activities, as
requirements are updated throughout the lifecycle process.
During this phase software quality characteristics (acceptance
criteria), such as human factors, functional characteristics,
response times, output, safety requirements, etc, are defined.
This is also an appropriate time to start writing a preliminary
operator's manual.

Draft Version 1.3 12 August 1996
CDRH Use Only

A-4

Figure A-1. Generic Software Development Lifecycle Model.
(Adapted from IEC 601-1-4 Figure DDD.1.)

A.3 Architectural Analysis and Specification.

The second generic phase in any development lifecycle model is
architectural analysis. During this phase functional and safety
requirements are allocated to hardware, software, and
communications components. Tradeoff studies are performed to
determine the most efficient and cost effective allocation of
requirements. Interfaces between these components are defined.
The analysis performed in this phase is done in an iterative
manner as the architecture is continually refined at lower levels
of detail. The key decisions made during this phase include the
selection of hardware platforms, operating systems, and
compilers.

A.4 Design and Development.

The third generic phase in any development lifecycle model is
design. During the design phase, analyses are conducted to
identify the most efficient way to logically implement the
requirements assigned to the software. In the case of a
database, both a logical and a physical design will be developed.
The goal of design analysis is to optimize the structure, size,
and overall performance of the software.

Draft Version 1.3 12 August 1996
CDRH Use Only

A-5

During development, the software requirements expressed in the
software requirements specification, architectural
considerations, and design are translated into source code.
During this phase, appropriate coding standards should be
utilized. Code should be well commented with appropriate
headers, inline comments, and supporting documentation. Code
walkthroughs and inspections should be performed. The source
code is compiled to remove syntax errors. Unit testing is
conducted to exercise and test the program logic, the control
structures, the boundary conditions, computations, comparisons,
and control flow. Detailed design diagrams are prepared during
this phase. Appropriate corrections are made to the source code
and supporting documentation following unit testing. Integration
test plans can be generated after design, but before development.
It is also valuable to have an independent person or organization
generate the test plans.

A.5 Verification Activities.

The fourth generic phase in any development lifecycle model is
verification. It is common to hear "verification and validation"
spoken together, as if it were one activity. But they are in
fact very different. Verification activities, as stated earlier
in section 2.5, should evaluate the realization of the safety
objectives and verify the correct implementation of functional
and safety requirements specification. Validation activities are
discussed in Section A.6. Verification activities should
determine that the outputs of software development are traceable
to and satisfy the requirements established at the beginning of
each phase. Although some consider this a "testing" activity,
verification also includes analysis, review, inspection, and
audit activities.

A preliminary verification plan, which outlines the purposes and
activities of verification, can be initiated prior to
implementing the software lifecycle process. More details will
be included in the plan once the requirements and design phases
begin.

Activities and documentation of verification may vary depending
on the specific software development phase. There are times when
a review and analysis is conducted and documented, and other
times when test plans are written and implemented, and results
recorded and analyzed. Of course this is dependent on the
specific phase and project in question.

A.5.1 Verification of Requirements Analysis and Specification.

Verification should be viewed as an assurance activity for each
phase of software development, not just as testing. Software

Draft Version 1.3 12 August 1996
CDRH Use Only

A-6

requirements specifications are reviewed for completeness,
consistency, effectiveness, testability, traceability, and
safety. This verifies that the requirements analysis and
specification phase produces appropriate documentation and
attributes. Functional test plans and test cases are developed
and are traceable to requirements specifications. The
traceability matrix is initiated. Hazards identified in the
preliminary hazard and safety analyses are addressed with
appropriate software and system safety requirements
specifications.

A.5.2 Verification of Architectural Analysis and Specification.

During the architectural analysis and specification phase, the
architecture of the system and design specifications are
developed. The software requirements are, if appropriate, broken
down into modules (modularization criteria). Safety
requirements are incorporated into an appropriate design
architecture. Graphical, symbolic, and notational models that
are conventional for the analysis and design method used.
Verification of these activities would include evaluating:

- the design specification for consistency, completeness,
safety and testability;

- traceability to software, system, and safety
requirements;

- design interface analyses; and

- design review documentation.

A.5.3 Verification of Design and Development.

The ultimate goal of the design and development phase is to
develop well commented, documented, modular, and structured
source code using a programming language that is suitable for the
particular application. Utilizing appropriate coding techniques,
efficient memory utilization, efficient timing, single entries
and exits, and data encapsulation are also goals of the design
and development phase. Verification of this phase includes code
walkthroughs and inspections, evaluation of completeness,
testability, and coding practices, debugging, traceability
analysis, and static analysis tools used to assess structural
characteristics. Code inspections consist of going through the
source code line by line and examining each statement to verify
completeness and accuracy. Walkthroughs consist of using data
inputs and their associated known outputs to "walk through" the
source code to verify that the known results are obtained. Code
inspections and walkthroughs are typically performed in teams

Draft Version 1.3 12 August 1996
CDRH Use Only

A-7

which track and document all errors found in the code and
supporting documentation prior to implementing any corrective
action. The verification activities associated with this phase
should be documented in order to assess code reviews activities,
inspections and analyses.

A.5.4 Verification Testing.

Much of the testing aspect of software is developed in the
initial requirements phase where preliminary plans for software
testing are initially identified. Throughout the development
process, the test plans are modified to account for the software
and system requirements, design constraints and considerations,
and implementation strategies, and their associated process
outputs. Verification testing can be viewed as software testing
as it relates to the unit, module, sub-system and integration
aspects of software. These test plans are a part of the
documentation of the verification aspect of testing, and should
be described as part of the software verification plan.

Testing which is designed and written to assess the software
performance at various stages of development should be reviewed
for accuracy, completeness, and traceability prior to
implementing the test plans. Once implemented and complete, the
results (data, not just a pass/fail notation) as well as a report
and appropriate analyses should also be well documented to assess
the test completion criteria prior to final system and acceptance
testing. This includes all aspects of testing and analysis,
which may include white-box (logic driven) and black-box (data
driven) testing, as well as static (no execution) and dynamic
(execution) analyses. Verification test plans should include
test completion criteria and also include:

- test cases that take into account functional testing
(expected normal inputs and outputs);

- boundary value testing (across boundaries such as, data
set sizes, ranges, etc.);

- stress testing (intentionally try to break or fool
system);

- performance testing (timing and throughput); and

- structure testing (traverse data and logic paths).

All tests should cover special cases in order to track and
document software performance in case of invalid or out of range
inputs, including various sizes of data sets, and how the system
performs error handling and safety functions. This should be

Draft Version 1.3 12 August 1996
CDRH Use Only

A-8

traceable, throughout testing, to the software development
process and documentation. The test plans should include the
testing and expected results, methods and analyses to be used, as
well as tools to use for performing tests and measurements.

It should be noted here that at any point during software
development assurance activities may uncover defects,
inconsistencies, anomalies, and errors that should be documented
and traced back to the appropriate source, whether the test plan,
code, design or requirements and related documentation, following
appropriate change control and configuration management
procedures. This documentation should be maintained and tracked
as part of the documentation of the software lifecycle. When
changes are incorporated, appropriate regression analysis and
testing should occur through the software lifecycle process.
This information should be analyzed and applied as "lessons
learned" to future software projects.

A.6 Validation Activities.

The final generic phase in any development lifecycle model is
system validation. Validation is designed to assure that the
right product was built; that is to say that it meets stated
requirements. Of course, validation also involves other phases
of testing as previously mentioned. A test failure during this
level of testing is only a symptom of an underlying problem which
would need to be traced through the software development process.
Validation usually consists of functional, system testing, and
acceptance testing. Functional testing is associated with
finding discrepancies between the software and its external
specification, typically from the end-user's perspective. System
validation can include tests for a high volume of data, heavy
loads or stresses, human factors, security, performance,
configuration compatibility (hardware and software), fault
testing (recovery, detection, avoidance, and tolerance), user
documentation, implementation of safety requirements,
installation and serviceability. Acceptance testing is usually
associated with customer acceptance testing and beta site
testing, but may overlap with functional and system testing
requirements.

Typically beta site testing is performed by the user (or users)
or organization in its intended environment to see if the system
meets the user's requirements and to find potential weaknesses.
It is testing of the software in a clinical site for trade
acceptance or as a formal part of validation. Beta site testing
may involve treatment of human subjects or it may involve a
testing procedure done in parallel with and compared to a
currently used competitive product that is in routine clinical
use. Beta site testing involving the treatment of a human

Draft Version 1.3 12 August 1996
CDRH Use Only

A-9

subject requires IRB concurrence and the submission of an IDE to
FDA if the study is judged to be of significant risk.

A final verification and validation report should be generated
which documents all verification and validation activities,
results, and analyses. As previously discussed, when changes
are made during software development, appropriate regression
analysis and testing should occur throughout the software
lifecycle phases to access the impact of the change.

Complexity also plays an important role as well since more
medical devices are becoming software controlled; for example, a
radiation therapy treatment planning system. So, it is
reasonable to expect a complex system to undergo a more in depth
software review. Complexity could mean a combination of one or
more of the following: multiple sub-systems, very large
programs, multiple processors, complex architecture and design,
new technology, etc. The major aspect of a review for such a
device would consist of evaluating software lifecycle
documentation.

A.7 Configuration Management and Change Control.

Configuration management and change control is an ongoing
activity throughout the development lifecycle and the operation
and maintenance phase. Configuration management activities
include tracking and controlling all work products associated
with the software. This includes: requirements specifications,
design documentation, source code, object code, test plans and
procedures.
A configuration management plan typically consists of defining
what is to be managed, how it is to be managed, and who is
responsible, i.e.:

- policies for establishing the baseline;

- policies for suggesting, approving, implementing, and
recording proposed changes;

- policies for maintaining and identifying versions;

- records describing the configuration management process
and individual responsibilities;

- a description of the automated tools used (if any); and

 - a definition of the overall tracking system.

During the development lifecycle various project milestones
result in formal acceptance of work products, such as the project

Draft Version 1.3 12 August 1996
CDRH Use Only

A-10

plan, test plan, user's manual, architectural analysis and
design, verification and validation test plan, and source code.
At this time these work products are placed under configuration
control. Subsequent modifications occur through the
configuration management process. Items should be clearly marked
to identify the current or correct version of the software and
its associated documentation. Of course, this means that
software process outputs, such as requirements and
specifications, design, source code and various levels of testing
are all marked and traceable by version identification.

Change is inevitable. The process of correcting bugs, making
improvements and enhancements, and upgrading requirements and
specifications is ongoing. There should be a documented process
for: (1) establishing the baseline, (2) identifying the change
through a change request procedure, (3) undergoing appropriate
review and analysis, and (4) identifying appropriate means to
updating appropriate documentation and testing activities when
necessary. Each change should be subject to regression analysis
in order to assess the impact of the change on the software and
system requirements and design, source code, and testing
activities. This allows for tracking and controlling the
revision history of a particular software product. It also
ensures that the software development process and evolution is
auditable for assessing software traceability, reliability, and
safety.

A.8 Independent Verification and Validation.

Verification and validation is a systematic process of lifecycle
activities: analysis, evaluation, assurance, and testing of the
software and its supporting documentation. To assure that a
system is appropriate, reliable, and safe, these activities
should involve "outsiders" who have not developed the
requirements, design, code or test plans. In an ideal world,
independent verification and validation would involve outside
third party review, evaluation, and testing; but this may not
always be feasible. It may be appropriate to incorporate third
party review within a company or organizational unit that is
independent of the personnel who developed the software product
and documentation. However, the level of criticality should also
help determine this as well. For a higher risk device,
independent third party review may be desirable. For a small
company, third party review may be an even more important
consideration since so few personnel have been involved in the
software development. Independent analysis may be necessary to
uncover design flaws and bugs not apparent to those intimately
involved in the project. Verification and validation plans
should incorporate third party review, analysis, testing, and
auditing to ensure that the lifecycle activities and process

Draft Version 1.3 12 August 1996
CDRH Use Only

A-11

outputs are adequate and appropriate, and that the software is
safe and reliable.

The following sections from IEC 601-1-4 provide further
clarification on the degree of acceptable independence:

52.210.3 "The leader of the team carrying out the
VALIDATION shall be independent of the design team;"

52.210.4 "All professional relationships of the members of
the VALIDATION team with members of the design team shall
be documented in the RISK MANAGEMENT FILE;" and

52.210.5 "No member of a design team shall validate his own
design."

Figure A-2 summarizes the relationship between the generic
development lifecycle phases and their associated work products.
Not all phases and work products apply to all devices, nor should
these phases and work products be considered exhaustive.

Draft Version 1.3 12 August 1996
CDRH Use Only

A-12

PHASE
INPUTS ACTIVITY VERIFICATION WORK PRODUCTS

Requirements - system - define software - review of - software
Analysis and requirements quality requirements requirements
Specification - project, risk characteristics - assess adequacy specification

management, - generate and - safety
and software appropriateness traceability
development requirements of safety matrix
plans - identify safety - review - requirements

- software QA requirements functional test traceability
and - begin cases and plans matrix
requirements developing test - assess quality - preliminary
standards plans and cases attributes hazard

analysis
- functional

test cases
and plans

- preliminary
user’s manual

Architectural - system - allocation of - evaluate and - software
Analysis and requirements requirements review architecture
Design - software - develop sub- architecture and and design

requirements system, design documents
- preliminary component, - assess adequacy - verification

hazard interface, data and activities
analysis structure appropriateness reports,

- project, designs of safety design review
risk, and - modular - review test documentation
development decomposition cases and plans - updated
plans - design test - assess quality traceability

- software QA plans/cases attributes matrices and
and hazards
architectural analysis
/ design - test cases
standards and plans

Development - software - develop source, - code - source code
requirements/ object, and walkthroughs and and all
design executable code inspections supporting

- project, risk with supporting - static and documentation
management documentation dynamic analyses - verification
and - debug - unit/module/ activities
development - design test subsystem reports
plans plans/cases testing - updated

- software QA - safety/failure traceability
and coding analyses matrices and
standards - review test, hazard

data, cases, and analysis
plans - testing

- assess quality documentation
attributes

Test - test cases - unit/module/sub - review and - verification
and plans system analysis of activities

- source/execut - integration testing report
able code - performance, - review testing - resting

- software QA, stress, and traceability documentation
risk functional, to requirements, - verification
management structure, functional, and
plan and test fault, safety, performance, and validation
completion system, and safety report
criteria beta tests - assess quality - safety
standards attributes assessment

report

Figure A-2. Relationship between generic development lifecycle
phases and work products.

Draft Version 1.3 12 August 1996
CDRH Use Only

B-1

APPENDIX B. Technological Issues and Special Topics

This appendix, which is informative, provides a brief discussion
of a variety of special topics that relate to software and
premarket submissions. These topics are mentioned to give
reviewers a "heads-up" to alert them that the software may
incorporate these features and may need special attention or
further research. For a more comprehensive discussion of
individual topics, consult the references in Appendices D and E.

B.1 Artificial Intelligence, Expert Systems, and Neural
Networks.

Artificial intelligence (AI) is a field of research in computer
science which studies methods and techniques by which
computational machinery may exhibit behavior and responses
similar to those exhibited by humans and other biological
organisms. Two areas where concepts derived from artificial
intelligence research have been applied to problem solving tasks
are expert systems and artificial neural networks.

Expert systems attempt to model very specific areas of human
knowledge or expertise by distilling the experience of human
experts into a set of algorithms which can be executed by
software. The expert system often consists of a knowledge base
(consisting of rules, heuristics, or relationships between
objects or data) and an inference engine which manipulates the
knowledge according to selected criteria. Expert systems use
these rules or heuristics on facts input into the system to solve
problems in a narrow, well-defined domain or area. Typical
applications for expert systems include circuit analysis and
design, fault detection and diagnosis, automated finance
assessment and loan processing, and medical diagnosis and therapy
recommendation.

An artificial neural network (ANN) is a data processing
architecture that is modelled on principles exhibited in natural
or biological neural networks. Artificial neural networks are
often used to represent or process nonlinear functions applied to
large data sets. Artificial neural network engines can be
implemented in software, hardware (using parallel processing
architectures) or a combination of both. Artificial neural
networks are well-suited for detecting trends or patterns in
data, and are typically used for speech and natural language
processing, machine vision and image recognition, financial
trend forecasting, and automated medical image processing.
Artificial neural networks are represented symbolically as an
interconnected network of nodes arranged in a specific topology
or configuration. Links between nodes represent dependencies

Draft Version 1.3 12 August 1996
CDRH Use Only

B-2

between nodes and have weights associated with each link
representing the strengths of the dependencies. Artificial
neural networks typically have an input layer, hidden or
processing layers, and an output layer. The links between nodes,
and potentially the topology of the network itself, are adjusted
for specific tasks by training of the network, which involves
exposing the network to representative data sets to be processed.
Output from the network are compared to desired results and
corresponding adjustments are made to reduce any discrepancies
between the desired output and the actual output. The field of
artificial neural networks is a rapidly expanding one, and many
artificial neural network models, learning methods, topologies,
and training regimens currently exist with others being created
constantly.

Expert systems and artificial neural networks are relatively new
technologies which are increasingly being incorporated into
medical devices. However, they pose special challenges regarding
the verification and validation of the core processing
architectures: the knowledge base and inference engine for expert
systems, and the neural net engine for artificial neural network
systems.

The knowledge base of expert systems needs to be verified for
accuracy of information and of the relationships between data
objects or object classes. The heuristics and rules governing
the inference engine need to be analyzed to ensure that there are
no logical or common-sense contradictions or paradoxes that exist
or that are possible by the system in operation. Any output or
determination produced by an expert system should also be
accompanied by the reasoning path followed by the software to
reach its conclusions. Such information should serve to allow
the user to determine if the reasoning path followed by the
expert system is sound, or if other valid reasoning paths were
not appropriately explored.

Artificial neural networks are, by their very nature, difficult
(if not impossible) to qualify using traditional software
engineering methodology. The strength of artificial neural
networks, the ability of the network to “learn” by example and
self-adjust its internal parameters or configuration, is what
makes artificial neural network engines problematic. The
performance and behavior of artificial neural networks are
determined by selective exposure to training sets and its
environment, not by strict specifications. In some cases,
artificial neural networks can behave in a non-deterministic
manner (that is, the same input may produce different outputs at
different times). Traditional software engineering methodologies
are designed and intended for deterministic software
implementations.

Draft Version 1.3 12 August 1996
CDRH Use Only

B-3

The design, assumptions, learning method, and training set data
for an artificial neural network need to be evaluated for
appropriateness and correctness. The network designers need to
justify and explain the choices made for the artificial neural
network model, topology, and training sets, as well as explain
and justify the data set class that the artificial neural network
is intended to analyze or process. The designers need to
describe how overfitting or overtraining of the network was
avoided, i.e., when it was decided that the network was “trained”
sufficiently to enable appropriate performance before the network
begins to extract irrelevant details from the data from
overexposure to example sets. When examining the training set
presented to the neural network, it is important to ensure that
the features to be extracted (such as a specific pattern to be
detected) remain the common element within the training set data.
Once training has been completed, additional data sets should be
processed through the network to ensure that the performance
remains as expected and relevant data is extracted appropriately.
Tests should be performed to ensure that the network was not
trained to detect a particular peculiarity of the training set
instead of the intended features. Raw data processed by the
system should be presented to the user for comparison with the
output from the system.

B.2 Automatic Code Generators.

Some computer assisted software engineering (CASE) tools (see
B.3) include automatic code generators. Software from automatic
code generators must be verified and validated the same way as
any other software. This may include, where appropriate,
requirements traceability and code walkthroughs.

B.3 Computer Assisted Software Engineering (CASE) Tools.

Computer assisted software engineering (CASE) tools are often
used to automate or assist in software development and increase
productivity. There are many different tools and types of tools
available. At present there is not a single tool or suite of
tools from a single vendor which covers all phases of the
development lifecycle. This raises concerns about the accuracy
of outputs from CASE tools; particularly when developers work in
a non-integrated or multi-vendor tool environment.

B.4 Changes and Modifications.

Changes and modifications will occur during the development
lifecycle, after a device is fielded, and as a product line
matures. Modifications may take the form of requirements
changes, design changes, corrections, or enhancements. The
extent and nature of the modifications will determine whether:

Draft Version 1.3 12 August 1996
CDRH Use Only

B-4

(1) they can be accommodated by configuration management and
change control procedures; or (2) the requirements of the entire
development lifecycle apply. Of primary concern is the effect of
the modifications on risk analysis and control measures.

Examples of changes include:

1) New hardware platform . This could be migrating to a
newer version of the same architecture family, such as
i386 to i486, or changing architectures such as from
i486 to a workstation.

2) New operating system . This could be migrating to a
newer version of the same operating system or changing
operating systems.

3) New compiler . This could be migrating to a newer
version of the same compiler or changing compilers.

4) New functionality . This includes new features and
capabilities that are provided for the end-user.

5) Design enhancements and corrections . This includes
changes to the internal software design that may or may
not be visible to the end-user. These changes are
undertaken to improve software performance, safety, and
reliability.

The extent and nature of the changes and modifications will also
determine whether a new 510(k) submission is required or
information about the changes and their effect on software safety
and reliability may be submitted under the "Add to File"
provision. Refer to the latest version of FDA/CDRH publication
"Deciding When to Submit a 510(k) for a Change to an Existing
Device." Changes to an investigational device or PMA device
should be handled consistently with those types of devices and
submissions. (See Appendix E.6.)

B.5 Clinical Data.

When new algorithms are employed, whether for treatment,
diagnosis, or monitoring clinical data may be necessary. This
does not imply that every new algorithm needs to be clinically
tested, especially since new algorithms may be developed for
issues that do not relate to the inherent risk of a device, such
as a new communication protocol for an internal printer.
Manufacturers, however, should be aware that utilizing new
algorithms for various aspects of treatment, diagnosis,
interpretation, monitoring, etc. may need to be clinically
validated by appropriate clinical trials that yield relevant

Draft Version 1.3 12 August 1996
CDRH Use Only

B-5

clinical data and results. The reviewing division within CDRH
should also be contacted as early as possible for proper guidance
and requirements. Determinations of whether a particular device
would be one of significant risk and require an IDE should be
made by the reviewing division and/or an institutional review
board (IRB). Regardless of whether an IDE is submitted, adequate
informed consent should be made available to the patient and the
study should be approved by an IRB.

B.6 Closed Loop and Target Control.

Closed loop systems typically include patient feedback, while
target control typically "estimates" patient response. In either
case, control of a device is based on 'real' or 'estimated'
patient data. Typically, these types of devices have required
clinical data to support the algorithms on which they are based.
In either case, the design and architecture of the system
(including software) should allow for partitioning of the system
so that complexity is reduced, and safety and testability are
maximized. Safety is a critical issue since the clinician is
removed from direct control of the device. Adequate risk
assessment and mitigation activities should be performed during
the software lifecycle process, and failure analyses techniques
should include assessing multiple event failures. Some single
event failures may not pose a direct safety hazard, however, this
may change when multiple event failures occur concurrently or in
a particular sequence. Even if a legally marketed device is
incorporated into a closed loop or target control system,
requalification of the device in order to assess it’s
appropriateness for incorporation into one of these kind of
systems may be necessary, especially since the behavior in a
closed loop system may alter the way a device typically
functions. Due to the nature of using a device to either monitor
or control therapy in a closed loop system, qualification of the
device and any modifications should also be a part of the
software lifecycle processes and methodologies.

B.7 Custom Operating Systems.

Real-time systems may utilize a custom operating system which is
designed and developed for a particular use, especially on a
higher level of concern device. An executive system is
essentially an operating system much like that on a personal
computer that manages processes and resource allocation. They
typically include a clock, an interrupt handler, a scheduler, a
resource manager, a dispatcher, a configuration manager, and a
fault manager. Monitoring and control systems are real time
systems which are designed to a generic architecture and are used
for checking sensors which provide information about the system’s
environment and take actions depending on the sensors reading.

Draft Version 1.3 12 August 1996
CDRH Use Only

B-6

Monitoring systems take action when some exceptional sensor value
is detected. Control systems continuously control hardware
actuators depending on the value of associated sensors. Another
type of real-time system is a data acquisition system which
collect data from sensors for subsequent processing and analysis.
These also typically have a generic architectural design.

B.8 Data Compression.

Many data processing devices, such as a holter monitor, involve
storage of large volumes of data. To reduce the storage
requirements, there is a need to reduce the redundancy in the
data representation. That is, to compress the data. The
compression and expansion of data can be implemented in hardware,
firmware, or software. If compression and expansion is done in
software, there is an increase in complexity in the software and
there are many techniques that can be used to accomplish this.
Data compression can be divided into two categories: irreversible
and reversible. Irreversible techniques involve a reduction of
the physical representation of the data, usually referred to as
data compaction. All information is considered to be relevant in
data compression, and the compression will be followed later by
expansion which recovers the original data. It is the
manufacturer's responsibility to show that the expanded data
provides an accurate recount of the original data.

B.9 Embedded and Real-Time Systems.

Embedded and real-time systems include embedded software,
software using a real-time operating system, programmable logic
arrays (PLAs), programmable logic devices (PLDs), etc. This type
of software poses unique concerns about safety and reliability
because, in general, the development environment is different
than the intended operational environment. Techniques and/or
simulators and emulators must be employed to analyze the timing
of critical events and identify non-deterministic conditions.

B.10 Human Factors and Software Design.

The focus of human factors is user interface design. Poor design
induces errors and inefficiency among even the best-trained
users, especially under conditions of stress, time constraints,
and/or fatigue. Although labeling (e.g., user documentation) is
extremely important to good performance, even well-written
instructions are cumbersome to use in tandem with actual
operation. Also, it's difficult to write coherent documentation
which describes awkward operating procedures.

Although both hardware and software design influence the user's
performance, the logical and informational characteristics

Draft Version 1.3 12 August 1996
CDRH Use Only

B-7

provided via software are increasingly crucial. Data presented
in an ambiguous, difficult-to-read, or counter-intuitive manner
poses the threat of an incorrect reading, misinterpretation,
and/or improper data entry. An example might be a crowded
display with cryptic identifiers combined with a time lag between
user response and displayed feedback. Such design
characteristics overtax the user's abilities (e.g., memory,
visual perception, decision-making, etc.), and resultant errors
may have serious consequences.

B.10.1 Common Problems.

The logic and simplicity of control-activated operations and
information access/manipulation is crucial, no matter what the
program medium. Below are problem areas which lead to errors,
and most are generally applicable to devices regardless of manner
of control operation and information display or feedback:

- Uncertain/no feedback following input;

- missing or ambiguous prompts;

- automatic resets or defaults not initialized by the
user;

- unreasonable mental calculations required;

- no query for critical input;

- complex command structure;

- unfamiliar language/coding/acronyms, mnemonics, etc;

- inconsistencies among formats for successive or
co-located displays;

- conventions (e.g., color) contradictory to user
stereotypes/expectations;

- ambiguous symbols or icons;

- no appropriate lock-outs or interlocks;

- illogical or cumbersome control sequences or screen
call-up ("navigation");

- no status information; etc.

B.10.2 Examples.

Draft Version 1.3 12 August 1996
CDRH Use Only

B-8

Many user errors induced by software design are attributed to
other factors due to the fact that often little, if any, physical
evidence remains after the fact. Also, software-related errors
can be subtle. For example, confusion from illogical data entry
sequences can induce errors only indirectly related to these
procedures. In any case, there are many software examples
gathered from incident files, recalls, and analytic findings.
Below are a few examples:

a. In at least one radiation device there have been problems

due to the fact that user failure to input a dosage (time or
amount?) leads to a default value. The user was not queried;
nor was the default value displayed or a warning/alarm
presented.

b. A neonatal monitor didn't alarm for very high heart rate.

It switches to "Half-Rate" display when rate is over 240
BPM. The patient, an infant, was hypoxic and required
emergency treatment.

c. CDRH discovered that a clinical batch analyzer clears all

patient information fields when the operator attempts to
remove any incorrect information for that patient. Also,
"cleared" values are reassigned in such a way to increase
the number of false negative readings over the batch.

d. There have been numerous recalls of devices in which slight
deviations from prescribed operating sequences will disable
the device, in some cases without any feedback to the
operator.

B.10.3 Proper Analysis and Testing Pays Off.

Good human factors design involves the following; a) integrating
users into the design process early; b) close coordination of
software and hardware efforts; c) including user "advocates" and
subject matter experts on the design team; and d) performing
iterative analyses, simulations, and usability tests. Tools may
involve surveys, focus tests, interviews, storyboards,
documentation, etc.

The human factors engineering process can elucidate subtleties
that even user-oriented designers can overlook. For example,
symbols, icons, colors, abbreviations, etc. can convey a great
deal of information reliably, economically, and quickly; but a
priori assumptions about their meaning and clarity can be
incorrect, depending upon variability among user populations,
work settings, device experience, and conventions outside of the
medical area. Analysis, testing and the judicious use of
guidelines and standards can be incisive. In general, the human
factors payoff includes fewer injuries or deaths, reduced

Draft Version 1.3 12 August 1996
CDRH Use Only

B-9

training costs, and more marketable products. A full-length
primer on human factors considerations for medical devices,
titled "Do it by Design", is being prepared by FDA/CDRH Office of
Health Industry Programs (OHIP). For more information about this
document and its status, please contact the OHIP representatives
to the CDRH Software Task Force listed on page ii.

B.11 Off-the-Shelf (OTS) Software.

Off-the-shelf (OTS) end-user software products are designed,
developed, verified and validated for use in an office or
industrial environment. Regularly scheduled releases of new
versions of OTS software are planned which incorporate
corrections and product enhancements. OTS software is not
developed with the degree of rigor necessary for safety-critical
applications. Hence, the responsibility for verifying and
validating the use of OTS software falls to the medical device
manufacturer. Verification and validation activities should
evaluate the safety, reliability, and integrity of the OTS
product and its intended use in a medical device, and allow for
appropriate safeguards to be designed and developed for the
device.

There may be instances in higher level of concern software where
the use of OTS is inappropriate since the developer may not have
access to appropriate documentation or source code to implement
proper corrections and modifications that may be necessary, or
subject the software to proper development techniques and risk
management activities.

Re-engineering (or reverse engineering) is another issue with OTS
software; e.g. a firm is working with only executable code and
has no supporting documentation or access to source code. For
higher level of concern software, finding another vendor who can
support OTS software or developing a custom operating system may
be a safer choice.

Use of OTS software that cannot be evaluated properly, be
subjected to software lifecycle processes, or be modified if a
bug or anomaly occurs, may not be appropriate to use in higher
level of concern software. System level tests can be performed
on OTS; however, most errors found at the system level are
indicative that there are more serious problems. Errors at this
level are considered symptoms, not identification of the problem.

A draft policy is being developed concerning the regulation of
medical devices employing OTS software.

B.12 Open Systems and Open Systems Architecture.

Draft Version 1.3 12 August 1996
CDRH Use Only

B-10

Open systems may be viewed differently by many people. One view
is the ability to enable dissimilar computers to exchange
information and run each other’s software via interfaces from
independent vendors. These would be considered “open” operating
systems with increased interoperability, flexibility, and
portability. The idea is freeing proprietary pathways within
each system. Another view is one which is used more frequently
and pertains to sharing device control and communications within
networks, across devices, etc. This allows for flexibility in
configuring networks and systems, and may include various aspects
of medical devices and hospital information systems such as
intensive care units, critical care units, operating rooms,
pulmonary and cardiac labs, clinical laboratories, radiology
laboratories, etc. This sharing of information, control, and
network time and space increases the complexity of medical
devices. This may not be desirable for higher risk devices,
especially since the environment will be difficult to model
during verification and validation. Appropriate test suites and
test cases may be difficult to analyze from a “completeness”
point of view; determining when enough testing has taken place
and test completion criteria has been met.

The term “open system” has typically referred to the flexibility
in using several different vendor devices in a network of some
kind, which would require that each vendor have appropriate
knowledge of proprietary device drivers for appropriate
communication. During the verification and validation process,
all information needed for proper communication must be well
known by all so that devices can be properly developed and
tested. Because medical devices of “higher” level of concern
require a more robust operating environment, open systems may not
be the most appropriate approach.

B.13 Process Control Software.

Process control software is a Good Manufacturing Process (GMP),
Good Laboratory Practice (GLP), or Good Clinical Practice (GCP)
issue. While the same development lifecycle and risk management
activities apply, the primary concern is that the software works
correctly in the intended manufacturing, laboratory, or clinical
process.

B.14 Redundant Displays.

Redundant displays, even if secondary, are relied upon as much as
the original device monitor. A redundant display allows
information to be displayed at a remote location (or different
position from the parent device) and sometimes allows for limited
control of the device. Manufacturers should be aware that
redundant displays are considered medical devices, just as the

Draft Version 1.3 12 August 1996
CDRH Use Only

B-11

parent device, and are reviewed as such. Therefore, software
development activities for such a device should be treated with
the same regard. This is especially true if the device is part
of a “higher” level of concern monitoring system.

B.15 Research Shareware/Freely Distributed Software.

Research shareware is software that: 1) is developed in a
university/research setting; 2) receives limited distribution in
order to obtain feedback from beta testing; and 3) is developed
and distributed with no intent to market. Research shareware may
be distributed in the form of object code, source code, and/or
source code listings. The functionality, safety features and
procedures, and reliability must be validated for the intended
use. Should research shareware be incorporated into a commercial
product, the end manufacturer is responsible for validation,
verification, and support activities. FDA/CDRH Office of
Compliance, Division of Enforcement II released a legal opinion
on this issue October 20, 1995, and intends to issue a notice in
the Federal Register stating its position and seeking public
comment.

B.16 Reuse and Libraries.

"Software reuse involves reusing existing components rather than
developing them specially for an application. Systematic reuse
can improve reliability, reduce management risk, and reduce
development costs. Software development with reuse needs a
library of reusable components that can be understood by the
reuser; information on how to reuse the components should also be
provided. Systematic reuse requires a properly catalogued and
documented base of reusable components. Reusable software
components do not simply emerge as a by-product of software
development. Extra effort must be added to generalize the system
components to make them reusable. Abstract data types and
objects are effective encapsulators of reusable components.
Development according to standards for languages, operating
systems, networking and graphical user interfaces minimizes the
costs of implementing a system on different types of computers."
(Sommerville 1996, see Appendix E.1.)

If specifications, design documentation, test plans and
procedures are written for the lowest level software components,
they can be reused also. Prior to reusing software, an
evaluation should be made of the appropriateness of the intended
use in the new application and its affect on safety and
reliability. If the development environment or lifecycle
processes differ when software is reused and supporting
documentation is not consistent with the new software lifecycle
methodologies, some re-engineering may need to occur to import

Draft Version 1.3 12 August 1996
CDRH Use Only

B-12

the reused software into the new environment.

B.17 Security and Privacy.

Security can be viewed in many ways. Preventing access to data
or records is one view. It may also pertain to accidental or
intentional data manipulation, corruption or destruction that may
occur through environmental factors such as a power failure which
causes data to be lost. Software should be designed, verified,
and validated so that these accidental, intentional, and/or
environmental data losses do not occur.

Security may also be viewed as only allowing access to records by
authorized parties. For example, records that are maintained
regarding anesthesia delivery and monitoring in the operating
room or ICU devices that maintain patient records should not be
accessible to everyone. When records are modified, an indication
that the data or record was modified should appear in the record
and be printed on the patient report so that it is known that
someone modified the data that was recorded and retrieved by the
device. Not allowing for such a modification could be a
potential solution. However, with many different types of
editors and data conversion programs, this is virtually
impossible to assure unless proprietary encryption is used so
that records would not be readable by other devices, programs, or
computers. And there are some devices where data manipulation
may be desirable if the user does not agree with an event marker
or interpretation offered by a medical device, and may need the
opportunity to override the decision on the record. It is not
within the scope of this document to provide solutions to
computer/software/data security issues. It is, however, in the
scope of this document to raise this issue and ask that
manufacturers consider this during the development of software.
Some common solutions would be to provide software and data
backup on a regular basis, password protection, data recovery
methods, and utilize well designed and tested
encryption/decryption algorithms when appropriate.

B.18 Stand-Alone Software.

A draft policy is being developed concerning the regulation of
stand-alone medical software products.

B.19 Software Accessories.

Software accessories to medical devices or software that may
already fall into its own regulatory classification can be placed
in two categories:

a. Software that is specified/intended for use with any

Draft Version 1.3 12 August 1996
CDRH Use Only

B-13

classified device; or

b. Software that is physically connected to a medical
device for purposes of data transfer between the device
and the software.

Once it is determined that software is an accessory, it does not
qualify for any exemption.

B.20 User Modifiable Software.

User modifiable software includes situations where the user is
able to configure a menu, the display screen, alarm and
performance limits, as well as select normal values, data base
information, or input their own interpretations, normal values
and text. This is also a human factors issue (see B.10), but the
issue of proper verification and validation during the software
lifecycle becomes difficult since users can do virtually anything
during use of a device. Beta site testing is important during
software validation since it allows the users to use and try to
intentionally break the system to ensure that proper safeguards
have been incorporated. This kind of testing may be hard to
duplicate off site unless users are invited to a facility during
development to better facilitate the verification and validation
processes. Employing appropriate requirements, device
limitations, and design constraints for user modifiable software
is a vital human factors and safety concern. Lifecycle
processes, including testing and analysis, should account for
these concerns.

Draft Version 1.3 12 August 1996
CDRH Use Only

C-1

Appendix C. Review Checklist and Common Requests

This appendix provides a reviewer checklist and sample questions
for use in reviewing premarket medical device software
submissions. These questions are frequently included in requests
to manufacturers for additional information. Not all items apply
to all devices; nor should these items be considered exhaustive.
Appendix C is intended to be used as a memory jogger to verify
the information is included in the submission. After that, the
information is reviewed for content.

C.1 Review Checklist.

This checklist is intended to be used by reviewers and
manufacturers to determine if the software documentation is
consistent with the device.

1. Is the hazard analysis complete, and is it consistent with
the device and intended use and level of concern
determination?

2. Are appropriate safety requirements incorporated in the
device which address the hazards identified? Have they been
appropriately evaluated?

3. Are the software lifecycle processes and methodologies
discussed appropriate for the safety issues and level of
concern of the device? Does the submission discuss how the
hazard analysis was performed?

a. If this is a "lower" level of concern, is it adequate
for addressing the hazards that were identified?

- Are the lifecycle processes, risk control
measures, and quality assurance activities
reasonable for the device?

b. If this is a "higher" level of concern, is it adequate
for addressing the hazards that were identified?

- Are the lifecycle processes, quality assurance
measures, and risk management activities
appropriate in addressing the safety issues for
the device?

4. Are verification and validation activities performed prior
to formal release?

5. Is there adequate documentation generated to assure

Draft Version 1.3 12 August 1996
CDRH Use Only

C-2

traceability?

6. Are configuration management and change control procedures
adequate to track and control software products if
corrections are necessary or modifications are made?

7. Are the software and system requirements consistent with
device claims, labeling, and intended use?

8. Are potentially hazardous functions of the device
appropriately monitored?

9. Are safe and unsafe operating states of the device
identified and included in the warnings section of the
operator's manual?

10. Are security measures consistent for the level of security
required for data or device access for preventing data loss?

11. Are there redundant controls or back up mechanisms to
override hazardous and non-hazardous software failures?

12. Do safety measures address component failures and
environmental influences?

13. Are potentially hazardous functions of the device limited
only by software? Is this appropriate?

14. Is the device architecture safe and practical for the
device?

15. Is device safety assessed adequately?

16. Are the test strategies, cases, and test completion criteria
sufficient to determine that the device meets its
requirements, including safety?

17. Do results of tests and analyses demonstrate conformance to
all requirements, including safety?

18. Are remaining software bugs non-hazardous to the patient or
user? Do they impact on human factors? Are they adequately
communicated to the user?

19. When data are transmitted between devices or device
elements, are means provided to ensure there are no
transmission errors? How is this verified?

Draft Version 1.3 12 August 1996
CDRH Use Only

C-3

C.2 Common Requests.

Every software product should possess safety and reliability
attributes which are acquired through thorough analysis, design,
implementation, testing, quality assurance, and maintenance. The
software documentation generated throughout the development
lifecycle should be well controlled and documented. The
following should be provided in a premarket submission:

a. Please provide a composite device hazard analysis that takes
into account all device hazards associated with its intended
use, hardware, and software. As part of this composite
analysis, please provide a software hazard analysis to
demonstrate that software hazards have been considered
during the software development process. Each hazard
analysis should include the following:

i. the hazardous event,
ii. level of concern,
iii. the method of control,
iv. corrective measures taken, including aspects of the

device design/requirements, that eliminate, reduce, or
warn of a hazardous event, including a discussion of
its appropriateness, and

v. testing and evaluation demonstrating the implementation
of the safety features.

Also, please provide documentation discussing how the hazard
analysis was performed, and the traceability between
requirements, design, testing and risk assessment activities
regarding the device hazards.

b. Please indicate if the device is of higher or lower level of
concern. Include appropriate justification and analysis.

c. Please provide a discussion of your software development
lifecycle processes and methodologies as it applies to the
device under review. This should describe the following:

- the lifecycle process plans and activities,
- quality assurance plans and activities,
- risk management plans and activities,
- a description of the development environment,
- design and coding standards,
- verification and validation plans and activities,
- the generated documentation,
- configuration management plans and control, and
- maintenance.

Draft Version 1.3 12 August 1996
CDRH Use Only

C-4

d. Please provide the software and system requirements and
design. This information should include the following:

i. hardware requirements, including microprocessors,
memory devices, sensors, energy sources, safety
features, device limitations, communications, etc.

ii. programming language and program size(s),
iii. software performance and functional requirements as

follows:

- algorithms or control characteristics for therapy,
diagnosis, monitoring, alarms, analysis and
interpretation (with full text references or
supporting clinical data if necessary),

- device limitations due to software,
- internal software tests and checks,
- error and interrupt handling,
- fault detection, tolerance, and recovery

characteristics,
- safety requirements,
- timing and memory requirements,
- communication protocols,

 - identification of off-the-shelf software (if
appropriate).

iv. software and system design and architecture as follows:

- subsystem and modularization criteria,
- software modules, including flow and structure

charts, and
- system block diagrams.

e. Please provide the following testing and analysis
information:

i. a system level test protocol with pass/fail criteria,
data, and an analysis of the results,

ii. a verification and validation test report discussing
how all phases and methods of testing and analysis
(unit, module, subsystem, integration, and system)
demonstrate that requirements were met. This should
include all version and revision identifiers for the
software and a discussion of testing results and
analysis of the following (when appropriate):

- fault, alarm, and hazard testing,
- error, range checking, and boundary value testing,
- timing analysis and testing,
- special algorithms and interpretation tests and

Draft Version 1.3 12 August 1996
CDRH Use Only

C-5

analysis,
- path analysis and branch testing,
- stress testing,
- device options, accessories, and configurations

testing,
- communications testing,
- memory utilization testing,
- qualification of off-the-shelf software (when use

is appropriate),
- acceptance and beta site testing,
- regression testing, and
- test completion criteria, including test case

approach and design.

iii. a fault tree analysis and failure mode effects
criticality analysis of the software and explain how
results were employed in the software/system
requirements, design, and testing,

iv. a list of errors and bugs which remain in the device
and explain how they were determined to not impact
safety or effectiveness, including operator usage and
human factors. These should be communicated to the
user in the device labeling.

Draft Version 1.3 12 August 1996
CDRH Use Only

D-1

APPENDIX D. Relevant National and International Consensus
Standards

The following list is a collection of current voluntary national
and international consensus standards that are directly or
indirectly related to medical device software safety,
reliability, and lifecycle issues. The list is comprehensive but
not exhaustive and is provided for consideration. It is
understood that standards are continually undergoing
update/reaffirmation cycles; accordingly the newest approved
version should be used. The selection of a particular standard
or set of standards will depend on many factors, including the
design/development methodology, the type of device, the type of
software, and standard corporate practices.

The standards are grouped by subject areas and may be obtained
from the American National Standards Institute (ANSI) or the
Institute of Electrical and Electronics Engineers, Inc. (IEEE) at
the addresses below. Two special volumes should be noted: (1)
ANSI publishes a complete volume of all of the ISO 9000
compendium standards; and (2) IEEE publishes a complete volume of
all of their software engineering standards.

ANSI
11 West 42nd Street
New York, NY 10036
212.302.1286 (fax)
212.642.4900 (voice)

IEEE
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331
908.562.1571 (fax)
908.562.3811 (voice)

D.1 General Lifecycle Activities.
1. ANSI/IEEE 1058 Standard for Software Project Management

Plans, 1993.

2. ANSI/IEEE 610.12 Software Engineering Terminology, 1995.

3. ANSI/IEEE 1063 Standard for Software User Documentation,
1993.

4. ANSI/NISO Z39.67 Software Description.

Draft Version 1.3 12 August 1996
CDRH Use Only

D-2

5. ANSI/IEEE 1002 Standard Taxonomy for Software Engineering
Standards, 1992.

6. ANSI/IEEE 1074 Standard for Developing Software Life Cycle
Processes, 1991.

7. ANSI/IEEE 1016 Recommended Practice for Software Design
Descriptions, 1993.

8. ANSI/IEEE 1016.1 Guide for Software Design Descriptions,
1993.

9. ANSI/IEEE 1045 Standard for Software Productivity Metrics,
1992.

10. ANSI/IEEE 830 Recommended Practice for Software Requirements
Specifications, 1993.

11. ANSI/IEEE 1028 Standard for Software Reviews & Audits, 1993.

12. ANSI/IEEE 1062 Recommended Practice for Software
Acquisition, 1993.

13. ANSI/IEEE 1220 Trial-use Standard for the Application and
Management of the System Engineering Process, 1995.

14. ISO/IEC 12207:1995(E) Information Technology -- Software
Lifecycle Processes.

D.2 Safety and Reliability.
1. Medical Electrical Equipment - Part 1: General Requirements

for Safety - 4. Collateral Standard: Programmable
Electrical Medical Systems, IEC (DIS) 601-1-4: 19xx.

2. ANSI/IEEE 982.1 Standard Dictionary of Measures to Produce
Reliable Software, 1988.

3. ANSI/IEEE 982.2 Guide for the use of Standard Dictionary of
Measures to Produce Reliable Software, 1988.

4. ANSI/IEEE 1012 Standard for Software Validation &
Verification, 1992.

5. ANSI/ANS 10.4 Nuclear Computer Programs, 1987.

6. ANSI/AIAA R-013 Software Reliability, 1992.

7. ANSI/IEEE 1228 Standard for Software Safety Plans, 1993.

Draft Version 1.3 12 August 1996
CDRH Use Only

D-3

8. Developing safe, effective, and reliable medical software,
1991 AAMI Monograph (MDS-175). [available from AAMI, 3330
Washington Blvd., Suite 400, Arlington, VA 22201-4598,
703.276.0793 (fax), 703.525.4890 (voice)]

9. IEC 1508 Functional safety: safety related systems
 Part 1: General requirements;

Part 2: Requirements for programmable electrical systems
 (PES);

Part 3: Software requirements;
Part 4: Definitions and abbreviations of terms;
Part 5: Guidelines for the application of Part 1
Part 6: Guidelines for the application of Parts 2 and 3;
Part 7: Bibliography of techniques and measures.

10. ISO/IEC JTC1/SC7 WG9 Project 7.30 Software Integrity Levels
(working draft 1.0), 1994.

11. (committee draft) IEC TC 56(secretariat)410 Dependability -
Risk analysis of technological systems, 1994.

12. (committee draft) IEC SC 45A(secretariat) Control systems
important to safety - 1st supplement to IEC 880, 1995.

13. IEC 812: 1985, Analysis techniques for system reliability -
Procedure for failure mode and effects analysis (FMEA).

14. IEC 1025: 1990, Fault tree analysis (FTA).

D.3 Quality Assurance.
1. ISO 8402 Quality Management and Quality Assurance Vocabulary

2. ISO (DIS) 8402/DAM 2 Quality Management and Quality
 Assurance Vocabulary Amendment 2

3. ISO 9000:1987 Quality Management and Quality
 Assurance Standards - Guidelines for Selection and Use

4. ISO (DIS) 9000-1 Quality Management and Quality Assurance
 Standards - Part 1: Guidelines for Selection and Use

5. ISO (DIS) 9000-2 Quality Management and Quality
 Assurance Standards - Part 2: Generic Guidelines for the
 Application of ISO 9001, ISO 9002, and ISO 9003

6. ISO 9000-3 1991 Quality Management and Quality
 Assurance Standards - Part 3: Guidelines for the

Application of ISO 9001 to the Development, Supply and
Maintenance of Software

Draft Version 1.3 12 August 1996
CDRH Use Only

D-4

7. ISO 9000-4 Quality Management and Quality Assurance
Standards - Part 4: Guide to Dependability Program
Management

8. ISO 9001:1987 Quality Systems - Model for Quality
 Assurance in Design/Development, Product, Installation and

Servicing

9. ISO (DIS) 9001 Quality Systems - Model for Quality Assurance
 in Design, Development, Production, Installation and
 Servicing

10. ISO 9002:1987 Quality Systems - Model for Quality
 Assurance in Production and Installation

11. ISO (DIS) 9002 Quality Systems - Model for Quality
 Assurance in Production, Installation and Servicing

12. ISO 9003:1987 Quality Systems - Model for Quality
 Assurance in Final Inspection and Test

13. ISO (DIS) 9003 Quality Systems - Model for Quality
 Assurance in Final Inspection and Test

14. ISO 9004:1987 Quality Management and Quality System
 Elements - Guidelines

15. ISO (DIS) 9004-1 Quality Management and Quality System
 Elements - Part 1: Guidelines

16. ISO 9004-2:1991 Quality Management and Quality System
 Elements - Part 2: Guidelines for Services

17. ISO (DIS) 9004-4 Quality Management and Quality System
 Elements - Part 4: Guidelines for Quality Improvement

18. ISO 10011-1:1990 Guidelines for Auditing Quality
 Systems - Part 1: Auditing

19. ISO 10011-2:1991 Guidelines for Auditing Quality
 Systems - Part 2: Qualification Criteria for Quality

Systems Auditors

20. ISO 10011-3:1991 Guidelines for Auditing Quality
 Systems - Part 3: Management of Audit Programs

21. ISO 10012-1:1992 Quality Assurance Requirements for
 Measuring Equipment - Part 1: Metrological Confirmation

System for Measuring Equipment

Draft Version 1.3 12 August 1996
CDRH Use Only

D-5

22. ISO (DIS) 10013 Guidelines for Developing Quality
 Manuals

23. ANSI/IEEE 730 Standard for Software Quality Assurance Plans,
1989.

24. ANSI/IEEE 1061 Standard for a Software Quality Metrics
Methodology, 1992.

25. ANSI/IEEE 1298 Software Quality Management System, Part 1:
Requirements, 1992.

D.4 Configuration Management.
1. ANSI/IEEE 1042 Guide to Software Configuration Management,

1993.

2. ANSI/IEEE 828 Standard for Software Configuration Plans,
1995.

3. ANSI/IEEE 1219 Standard for Software Maintenance, 1992.

D.5 Test and Evaluation.
1. ANSI/IEEE 829 Standard for Software Test Documentation,

1991.

2. ANSI/IEEE 1008 Standard for Software Unit Testing, 1993.

3. ANSI/IEEE 1044 Standard for Classification of Software
Errors, Faults, and Failures, 1993.

4. ANSI/IEEE 1059 Guide for Software Verification and
Validation, 1993.

D.6 Automated Tools.
1. ANSI/IEEE 990 Recommended Practice for ADA as a Program

Design Language, 1992.

2 ANSI/IEEE 1175 Standard Reference Model for Computing System
Tool Interconnections, 1991.

3. ANSI/IEEE 1209 Recommended Practices for the Evaluation and
Selection of CASE Tools, 1992.

4. IEEE P1348 draft 6.0 (1995) Recommended Practices for the
Adoption of CASE Tools.

Draft Version 1.3 12 August 1996
CDRH Use Only

D-6

D.7 Human Factors Engineering.
1. ANSI/AAMI HE48-1993 Human Factors Engineering, Guidelines

and
Preferred Practices for the Design of Medical Devices

2. (draft) Laboratory Instruments and Data Management Systems:

Design of Software User Interfaces and Software Systems
Validation, Operation, and Monitoring; Proposed Guideline
NCCLS GP19-P, vol. 14, no. 14, 1994. [available from NCCLS,
771 East Lancaster Avenue, Villanova, PA 19085,
610.525.2435 (voice), 610.527.8399 (fax)]

3. ANSI Z535.3-1991 Criteria for Safety Symbols.

Draft Version 1.3 12 August 1996
CDRH Use Only

E-1

APPENDIX E. Bibliography

This appendix cites books used in the preparation of this
document and suggested additional readings on the topics covered.
While this list includes many of the current publications, it is
not an exhaustive list.

E.1 General Lifecycle Activities.

Blum, Bruce I. TEDIUM and the Software Process, MIT Press,
Cambridge, Mass. 1990.

Blum, Bruce I. Software Engineering: A Holistic View,
Oxford University Press, New York, 1992.

Budgen, David Software Design, Addison-Wesley, 1994, ISBN
0-201-54403-2.

Calvez, Jean Paul Embedded Real-Time Systems: A
Specification and Design Methodology. John
Wiley & Sons, 1993. ISBN 0-471-93563-8.

Edwards, Keith Real-Time Structured Methods: Systems
Analysis John Wiley & Sons, 1993. ISBN-0471-
93415-1.

Fairley, Richard Software Engineering Concepts, McGraw-
Hill, Inc., 1985, ISBN 0-07-019902-7.

Jackson, Michael Software Requirements and Specifications,
Addison-Wesley, 1995, ISBN 0-201-87712-0.

Pressman, R.S. Software Engineering: A Practitioner's
Approach, McGraw-Hill, Inc., 1992.

Shumate, Ken and Keller, Marilyn. Software Specification
and Design: A Disciplined Approach for Real-
Time Systems. John Wiley & Sons, 1992. ISBN
0-471-53296-7.

Sommerville, Ian Software Engineering, 5th edition,
Addison-Wesley, 1996, ISBN 0-201-42765-6.

van Vliet, Hans Software Engineering: Principles and

Practices, John Wiley & Sons, Ltd.,
1993, ISBN 0-471-93611-1.

Witt, Bernard, Baker, F. Terry, and Merritt, Everett W.
Architecture and Design, Van Nostrand
Reinhold, 1994, ISBN 0-442-01556-9.

Draft Version 1.3 12 August 1996
CDRH Use Only

E-2

E.2 Safety and Reliability.

Leveson, Nancy G. Safeware, Addison-Wesley, 1995,
ISBN 0-201-11972-2.

Musa, J.D., Iannino, A. and Okumoto, K. Software
Reliability Measurement, Prediction, and
Application, McGraw-Hill, Inc., 1987.

Musa, J.D. Operational Profiles in Software Reliability
Engineering, IEEE Software, vol. 10, no. 2,
March 1993, pp. 14-32.

 Neumann, Peter G. Computer-Related Risks, ACM Press/Addison
Wesley, 1994. ISBN 0-201-55805-x.

Peterson, James L. Petri-Net Theory and the Modeling of
Systems, Prentice-Hall, 1981.

Raheja, Dev G. Assurance Technologies, Principles and
Practices, McGraw-Hill, Inc., 1991,
ISBN 0-07-051212-4.

Roland, Harold E., Moriarity, Brian System Safety
Engineering and Management, 2nd edition,
Wiley Interscience, 1990. ISBN 0-471-61816-0.

E.3 Quality Assurance.

Cho, Chin-Kuei An Introduction to Software Quality Control
John Wiley & Sons, Inc., 1980,
ISBN 0-471-04704-X.

Schmauch, Charles H. ISO 9000 for Software Developers, ASQC
Press 1994, ISBN 0-87389-246-1.

Schulmeyer, G. Gordon, McManus, James I. Handbook of
Software Quality Assurance, 2nd edition, Van
Nostrand Reinhold, 1992, ISBN 0-442-00796-5.

Schulmeyer, G. Gordon, McManus, James I. Total Quality
Management for Software, Van Nostrand
Reinhold, 1993, ISBN 0-442-00794-9.

E.4 Test and Evaluation.

Gilb, Tom and Graham, Dorothy Software Inspection,
Addison-Wesley, 1993, ISBN 0-201-63181-4.

Draft Version 1.3 12 August 1996
CDRH Use Only

E-3

Habayeb, Abdul System Effectiveness, Naval Post-Graduate
School.

Myers, Glenford J. The Art of Software Testing, John Wiley
& Sons, Inc., 1979, ISBN 0-471-04328-1.

 E.5 Human Factors Engineering.

Bias, R. and Mayhew, D. Cost Justifying Usability, Academic
Press, 1994.

Brown, Martin L. Human Computer Interface Design
Guidelines,Ablex Publishing Co., 1989.

Karat, C. "Cost Justifying Support on Software Development
Projects", Human Factors Society Bulletin,
Human Factors Society, 1992.

Norman, Donald A. The Psychology of Everyday Things, Basic
Books, 1988.

E.6 FDA Publications.

These publications may be obtained from the FDA/CDRH/OHIP
Division of Small Manufacturers Assistance (DSMA) at
1.800.899.0381 or 1.301.443.7491.

CBER Guideline for the Validation of Blood
Establishment Computer Systems, version 1.0,
October 1994.

CBER Docket No. 91N-0450, Guideline for Quality
Assurance in Blood Establishments.

CDRH Blue Book Memo "Device Labeling Guidance #G91-1",
dated March 8, 1991.

CDRH Deciding When to Submit a 510(k) for a Change to
an Existing Device, draft #2, August 1, 1995.

CDRH FDA Policy for the Regulation of Computer
Products, draft, 13 November 1989

CDRH Guidance for the Content and Review of 510(k)
Notifications for Picture Archiving and
Communications Systems (PACS) and Related Devices,
draft August 1993.

CDRH/OHIP Do It By Design: An Introduction to Human Factors
in Medical Devices, draft, February 1996.

Draft Version 1.3 12 August 1996
CDRH Use Only

E-4

ORA/DFI Guide to the Inspections of Software Development
Activities (The Software Lifecycle), draft,
November 1995.

ORA Guideline on the General Principles of Process
Validation.

Draft Version 1.3 12 August 1996
CDRH Use Only

F-1

APPENDIX F. Glossary for Computerized System and Software
Development Terminology.

The attachment to this appendix represents the current "FDA
Glossary of Computerized System and Software Development
Terminology" developed by the Office of Regulatory Affairs (ORA),
Division of Field Investigations (DFI). This glossary may be
publicly accessed and downloaded via modem:

FDA Bulletin Board 301.443.2893

parity: no
data bits: 8

 stop bits: 1
 asynchronous

